Induction of minor histocompatibility antigen-specific T-helper but not T-cytotoxic response is dependent on the source of antigen-presenting cell. 1990

C A van Els, and A Bakker, and J J van Rood, and E Goulmy
Department of Immunohematology and Blood Bank, University Hospital Leiden, The Netherlands.

We studied the accessory cell requirements for triggering in vivo primed human major histocompatibility complex class I- and class II-restricted T cells specific for minor histocompatibility antigens. We compared the antigen-presenting capacities of peripheral blood lymphocytes (PBLs) and Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCLs), both derived from the same donor, to induce minor histocompatibility antigen-specific cytotoxic and proliferative T cells. PBLs and EBV-LCLs were equally effective as antigen-presenting cells to trigger cytotoxic-T-cell responses specific for minor histocompatibility antigens, some of which were reactive with B cells only. In contrast, a clear difference was found between the capacities of the two antigen-presenting cell types to induce minor histocompatibility antigen-specific T-helper-cell responses. PBLs as antigen-presenting cells could induce T-helper-cell lines reactive against minor histocompatibility antigens presented on PBLs, on EBV-LCLs, or on both cell types as stimulator cells. Unexpectedly, however, EBV-LCLs as antigen-presenting cells in all instances failed to induce T-helper-cell responses specific for minor histocompatibility antigens presented on PBLs or on both PBLs and EBV-LCLs as stimulator cells and could only trigger T-helper cells directed against B-cell-specific minor histocompatibility antigens. Our findings indicate a dichotomy in the capacity of EBV-LCLs to present minor histocompatibility antigens in the induction versus the effector phse of the in vitro T-helper-cell response. Furthermore, the results show different in vitro accessory cell requirements for major histocompatibility complex class I- and class II-restricted T-cell responses specific for human minor histocompatibility antigens.

UI MeSH Term Description Entries
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D005260 Female Females
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

C A van Els, and A Bakker, and J J van Rood, and E Goulmy
July 1984, Journal of immunology (Baltimore, Md. : 1950),
C A van Els, and A Bakker, and J J van Rood, and E Goulmy
February 1983, Journal of immunology (Baltimore, Md. : 1950),
C A van Els, and A Bakker, and J J van Rood, and E Goulmy
June 1985, Transplantation,
C A van Els, and A Bakker, and J J van Rood, and E Goulmy
March 1980, Cellular immunology,
C A van Els, and A Bakker, and J J van Rood, and E Goulmy
January 2020, Frontiers in pediatrics,
C A van Els, and A Bakker, and J J van Rood, and E Goulmy
May 1993, Transplantation,
C A van Els, and A Bakker, and J J van Rood, and E Goulmy
January 2019, Molekuliarnaia biologiia,
C A van Els, and A Bakker, and J J van Rood, and E Goulmy
February 1987, Transplantation,
Copied contents to your clipboard!