Purification and characterization of a lipid thiobis ester from human neutrophil cytosol that reversibly deactivates the O2- -generating NADPH oxidase. 1990

E A Eklund, and T G Gabig
Division of Hematology-Oncology, Indiana University School of Medicine, Indianapolis 46202-5121.

Intact neutrophils possess a cellular mechanism that efficiently deactivates the microbicidal O2-generating NADPH oxidase during the respiratory burst (Akard, L. P., English, D., and Gabig, T. G. (1988) Blood 72, 322-327). The present studies directed at identifying the molecular mechanism(s) involved in NADPH oxidase deactivation showed that a heat- and trypsin-insensitive species in the cytosolic fraction from normal unstimulated neutrophils was capable of deactivating the membrane-associated NADPH oxidase isolated from opsonized zymosan- or phorbol 12-myristate 13-acetate-stimulated neutrophils. This cytosolic species also deactivated the cell-free-activated oxidase. Deactivation by this cytosolic species occurred in the absence of NADPH-dependent catalytic turnover and was reversible, since NADPH oxidase activity could be subsequently reactivated in the cell-free system. The sedimentable particulate fraction from unstimulated neutrophils did not demonstrate deactivator activity. Deactivator activity was demonstrated in the neutral lipid fraction of neutrophil cytosol extracted with chloroform:methanol. Following complete purification of cytosolic deactivator activity by thin layer chromatography and reversed phase high performance liquid chromatography, the deactivator species was shown to be a lipid thiobis ester compound by mass spectroscopy. Cellular metabolism of this compound in human neutrophils may reveal a unique mechanism for enzymatic control of the NADPH oxidase system and thereby play an important role in regulation of the inflammatory response.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E A Eklund, and T G Gabig
April 1986, The Journal of biological chemistry,
E A Eklund, and T G Gabig
March 1992, Biochemical pharmacology,
E A Eklund, and T G Gabig
May 1983, The Journal of biological chemistry,
Copied contents to your clipboard!