Heterologous expression of GPCRs in fission yeast. 2011

John Davey, and Graham Ladds
Department of Clinical Sciences, University of Warwick, Coventry, UK.

In this chapter, we describe methods to heterologously express G protein-coupled receptors (GPCRs) in the fission yeast Schizosaccharomyces (Sz.) pombe. GPCRs regulate a diverse range of biological processes in all eukaryotic cells, including plants, insects, humans, and yeast. The high degree of conservation between GPCRs from different organisms has facilitated the development of a large number of model systems to enable study of this pharmaceutically important family of cell-surface receptors. Of the many model systems available for investigating GPCRs, yeast have proven to be one of the more attractive. Yeasts' amenability to both genetic and biochemical manipulation, a reduced number of endogenous GPCRs and their relative low culturing costs has facilitated their use in many high-throughput drug screens. Given the high number of detailed methods relating to the expression of GPCRs within budding yeast, we have focused our attention on the use of fission yeast as a model system. We describe the methods used and provide examples from our own experiences of expressing a number of human GPCRs in Sz. pombe cells.

UI MeSH Term Description Entries
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012568 Schizosaccharomyces A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales. Fission Yeast,Schizosaccharomyces malidevorans,Schizosaccharomyces pombe,Yeast, Fission,S pombe,Fission Yeasts
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D043562 Receptors, G-Protein-Coupled The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS. G Protein Coupled Receptor,G-Protein-Coupled Receptor,G-Protein-Coupled Receptors,G Protein Coupled Receptors,Receptor, G-Protein-Coupled,Receptors, G Protein Coupled
D021381 Protein Transport The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein

Related Publications

John Davey, and Graham Ladds
January 1997, The Journal of eukaryotic microbiology,
John Davey, and Graham Ladds
January 2012, Methods in molecular biology (Clifton, N.J.),
John Davey, and Graham Ladds
January 2022, Methods in molecular biology (Clifton, N.J.),
John Davey, and Graham Ladds
May 2008, Yeast (Chichester, England),
John Davey, and Graham Ladds
June 2009, Biotechnology and applied biochemistry,
John Davey, and Graham Ladds
January 1995, Methods in molecular biology (Clifton, N.J.),
John Davey, and Graham Ladds
December 2023, Plant physiology and biochemistry : PPB,
John Davey, and Graham Ladds
January 2022, Methods in molecular biology (Clifton, N.J.),
John Davey, and Graham Ladds
January 1990, Methods in enzymology,
John Davey, and Graham Ladds
January 2005, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!