Radioligand binding methods for membrane preparations and intact cells. 2011

David B Bylund, and Myron L Toews
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA. dbylund@unmc.edu

The radioligand binding assay is a relatively simple but powerful tool for studying G protein-coupled receptors. There are three basic types of radioligand binding experiments: (1) saturation experiments from which the affinity of the radioligand for the receptor and the binding site density can be determined; (2) inhibition experiments from which the affinity of a competing, unlabeled compound for the receptor can be determined; and (3) kinetic experiments from which the forward and reverse rate constants for radioligand binding can be determined. Detailed methods for typical radioligand binding assays for G protein-coupled receptors in membranes and intact cells are presented for these types of experiments. Detailed procedures for analysis of the data obtained from these experiments are also given.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D043562 Receptors, G-Protein-Coupled The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS. G Protein Coupled Receptor,G-Protein-Coupled Receptor,G-Protein-Coupled Receptors,G Protein Coupled Receptors,Receptor, G-Protein-Coupled,Receptors, G Protein Coupled

Related Publications

David B Bylund, and Myron L Toews
January 1997, Methods in molecular biology (Clifton, N.J.),
David B Bylund, and Myron L Toews
January 1999, Methods in molecular biology (Clifton, N.J.),
David B Bylund, and Myron L Toews
June 2008, Biochemical pharmacology,
David B Bylund, and Myron L Toews
January 1997, Methods in molecular biology (Clifton, N.J.),
David B Bylund, and Myron L Toews
July 1978, Molecular pharmacology,
David B Bylund, and Myron L Toews
March 1998, European journal of pharmacology,
David B Bylund, and Myron L Toews
January 1985, Pharmacology,
David B Bylund, and Myron L Toews
January 1984, European journal of respiratory diseases. Supplement,
David B Bylund, and Myron L Toews
January 2001, Cellular & molecular biology letters,
Copied contents to your clipboard!