Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. 2011

Reyna K V Lim, and Qing Lin
Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA.

Visualization in biology has been greatly facilitated by the use of fluorescent proteins as in-cell probes. The genes coding for these wavelength-tunable proteins can be readily fused with the DNA coding for a protein of interest, which enables direct monitoring of natural proteins in real time inside living cells. Despite their success, however, fluorescent proteins have limitations that have only begun to be addressed in the past decade through the development of bioorthogonal chemistry. In this approach, a very small bioorthogonal tag is embedded within the basic building blocks of the cell, and then a variety of external molecules can be selectively conjugated to these pretagged biomolecules. The result is a veritable palette of biophysical probes for the researcher to choose from. In this Account, we review our progress in developing a photoinducible, bioorthogonal tetrazole-alkene cycloaddition reaction ("photoclick chemistry") and applying it to probe protein dynamics and function in live cells. The work described here summarizes the synthesis, structure, and reactivity studies of tetrazoles, including their optimization for applications in biology. Building on key insights from earlier reports, our initial studies of the reaction have revealed full water compatibility, high photoactivation quantum yield, tunable photoactivation wavelength, and broad substrate scope; an added benefit is the formation of fluorescent cycloadducts. Subsequent studies have shown fast reaction kinetics (up to 11.0 M(-1) s(-1)), with the rate depending on the HOMO energy of the nitrile imine dipole as well as the LUMO energy of the alkene dipolarophile. Moreover, through the use of photocrystallography, we have observed that the photogenerated nitrile imine adopts a bent geometry in the solid state. This observation has led to the synthesis of reactive, macrocyclic tetrazoles that contain a short "bridge" between two flanking phenyl rings. This photoclick chemistry has been used to label proteins rapidly (within ∼1 min) both in vitro and in E. coli . To create an effective interface with biology, we have identified both a metabolically incorporable alkene amino acid, homoallylglycine, and a genetically encodable tetrazole amino acid, p-(2-tetrazole)phenylalanine. We demonstrate the utility of these two moieties, respectively, in spatiotemporally controlled imaging of newly synthesized proteins and in site-specific labeling of proteins. Additionally, we demonstrate the use of the photoclick chemistry to perturb the localization of a fluorescent protein in mammalian cells.

UI MeSH Term Description Entries
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000475 Alkenes Unsaturated hydrocarbons of the type Cn-H2n, indicated by the suffix -ene. (Grant & Hackh's Chemical Dictionary, 5th ed, p408) Alkene,Olefin,Olefins,Pentene,Pentenes
D013777 Tetrazoles
D057930 Click Chemistry Organic chemistry methodology that mimics the modular nature of various biosynthetic processes. It uses highly reliable and selective reactions designed to "click" i.e., rapidly join small modular units together in high yield, without offensive byproducts. In combination with COMBINATORIAL CHEMISTRY TECHNIQUES, it is used for the synthesis of new compounds and combinatorial libraries. Click Chemical Reactions,Click Chemical Techniques,Chemical Reaction, Click,Chemical Reactions, Click,Chemical Technique, Click,Chemical Techniques, Click,Chemistries, Click,Chemistry, Click,Click Chemical Reaction,Click Chemical Technique,Click Chemistries,Reaction, Click Chemical,Reactions, Click Chemical,Technique, Click Chemical,Techniques, Click Chemical

Related Publications

Reyna K V Lim, and Qing Lin
September 2010, Molecular bioSystems,
Reyna K V Lim, and Qing Lin
February 2024, Analytical chemistry,
Reyna K V Lim, and Qing Lin
September 2022, Nature chemistry,
Reyna K V Lim, and Qing Lin
April 2006, Molecular & cellular proteomics : MCP,
Copied contents to your clipboard!