The kil-kor regulon of broad-host-range plasmid RK2: nucleotide sequence, polypeptide product, and expression of regulatory gene korC. 1990

J A Kornacki, and R S Burlage, and D H Figurski
Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.

Broad-host-range plasmid RK2 encodes several kil operons (kilA, kilB, kilC, kilE) whose expression is potentially lethal to Escherichia coli host cells. The kil operons and the RK2 replication initiator gene (trfA) are coregulated by various combinations of kor genes (korA, korB, korC, korE). This regulatory network is called the kil-kor regulon. Presented here are studies on the structure, product, and expression of korC. Genetic mapping revealed the precise location of korC in a region near transposon Tn1. We determined the nucleotide sequence of this region and identified the korC structural gene by analysis of korC mutants. Sequence analysis predicts the korC product to be a polypeptide of 85 amino acids with a molecular mass of 9,150 daltons. The KorC polypeptide was identified in vivo by expressing wild-type and mutant korC alleles from a bacteriophage T7 RNA polymerase-dependent promoter. The predicted structure of KorC polypeptide has a net positive charge and a helix-turn-helix region similar to those of known DNA-binding proteins. These properties are consistent with the repressorlike function of KorC protein, and we discuss the evidence that KorA and KorC proteins act as corepressors in the control of the kilC and kilE operons. Finally, we show that korC is expressed from the bla promoters within the upstream transposon Tn1, suggesting that insertion of Tn1 interrupted a plasmid operon that may have originally included korC and kilC.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J A Kornacki, and R S Burlage, and D H Figurski
January 1986, Proceedings of the National Academy of Sciences of the United States of America,
J A Kornacki, and R S Burlage, and D H Figurski
May 1984, Journal of molecular biology,
J A Kornacki, and R S Burlage, and D H Figurski
January 1983, Molecular & general genetics : MGG,
J A Kornacki, and R S Burlage, and D H Figurski
November 1987, Journal of molecular biology,
J A Kornacki, and R S Burlage, and D H Figurski
June 1983, Proceedings of the National Academy of Sciences of the United States of America,
J A Kornacki, and R S Burlage, and D H Figurski
March 1982, Proceedings of the National Academy of Sciences of the United States of America,
J A Kornacki, and R S Burlage, and D H Figurski
August 1993, Journal of bacteriology,
J A Kornacki, and R S Burlage, and D H Figurski
January 1985, Basic life sciences,
J A Kornacki, and R S Burlage, and D H Figurski
January 1981, Molecular & general genetics : MGG,
Copied contents to your clipboard!