DNA binding activity and transcriptional activator function of the human B-myb protein compared with c-MYB. 1990

G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
Tsukuba Life Science Center, Institute of Physical and Chemical Research, Ibaraki, Japan.

Three members of the myb gene family have been identified in human cDNA libraries c-myb, A-myb, and B-myb. We compared the DNA binding properties of the B-myb and c-myb proteins (B-MYB and c-MYB) using bacterially synthesized B-MYB and c-MYB in DNase I footprinting. B-MYB bound to most of the c-MYB binding sites examined, including the c-MYB binding site, MBS-I, in the simian virus (SV) 40 enhancer, in which the most frequent sequence was CCTAACTG. The MBS-I site was an enhancer element dependent on B-MYB and c-MYB in a co-transfection assay that used the B-myb or c-myb expression plasmid. Some sites in the SV40 genome, including the MBS-BI site, had high affinity with B-MYB but little or no affinity with c-MYB, in which the most frequent sequence was AGAAANPyrG. The MBS-BI site was an enhancer element dependent on B-MYB and a very weakly dependent on c-MYB. Our results showed that B-MYB is a transcriptional activator, like c-MYB, and that although B-MYB and c-MYB have similar sequence specificity for DNA binding some sequences were recognized by B-MYB preferentially.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
May 1996, Leukemia research,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
November 1994, The EMBO journal,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
May 1991, FEBS letters,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
November 2007, Molecular and cellular biology,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
December 1994, Cancer research,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
September 1994, Oncogene,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
June 1999, Oncogene,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
May 1990, Oncogene,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
January 2001, Blood cells, molecules & diseases,
G Mizuguchi, and H Nakagoshi, and T Nagase, and N Nomura, and T Date, and Y Ueno, and S Ishii
January 1998, The EMBO journal,
Copied contents to your clipboard!