Potassium adaptation after reduction of nephron population. 1978

J P Hayslett

Two weeks after 75 percent nephrectomy in rats fed a normal diet glomerular filtration rate was found to be reduced by 2/3 and there was no hyperkalemia. Normal K balance was maintained by a threefold increase of fractional urinary potassium excretion. When infused with 0.5 M KCl solution, both normal and 75 percent nephrectomized rats increased their fractional excretion, while normal rats kept on a very high K-diet did not further increase their fractional potassium excretion. Adaptation of fractional excretion to infused KCl was blunted in 75 percent nephrectomized rats given a low K diet.Addition of 0.1 M KCl to the drinking water resulted in a three- to fourfold increase of potassium intake in normal rats: within 7 days, the Na-K-ATPase in the outer medulla of the kidney rose by 30 percent but no change occurred in the cortex. Further increases in dietary K load induced an increase of Na-K-ATPase activity, both in outer medulla and cortex, but not in other tissues. After 75 percent nephrectomy, specific Na-K-ATPase activity increased by 20-25 percent in the outer medulla and in the cortex.Dietary K loading, in normal rats, also resulted in a large increase of net potassium secretion into the perfused colon and of specific Na-K-ATPase activity of the colonic mucosa. These effects of potassium loading were not abolished by adrenalectomy and were accompanied by an increase of transmural PD. It was concluded that chronic potassium loading may enhance secretion of potassium into lower nephron tubular fluid and into colonic contents by primarily stimulating the synthesis of Na-K-ATPase and the resulting increase of the number of pumping sites. 75 percent nephrectomy may induce similar changes in the remaining nephrons.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009392 Nephrectomy Excision of kidney. Heminephrectomy,Heminephrectomies,Nephrectomies
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

J P Hayslett
May 1971, The Journal of clinical investigation,
J P Hayslett
April 1998, Kidney international. Supplement,
J P Hayslett
August 1971, The American journal of physiology,
J P Hayslett
November 1986, Federation proceedings,
J P Hayslett
January 1979, Annual review of physiology,
Copied contents to your clipboard!