Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. 2011

Qiushui Chen, and Weili Wei, and Jin-Ming Lin
Analysis Center and Department of Chemistry, Tsinghua University, Beijing 100084, PR China.

In this work, we proposed a novel biosensor to homogeneously detect concanavalin A (ConA) using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer (FRET). Maltose-grafted-aminopyrene (Mal-Apy) was synthesized and characterized by mass spectra, UV-vis and fluorescence spectra. The Mal-Apy was further employed for fluorescence switch and ConA recognition. When Mal-Apy was self-assembled on the surface of graphene by means of π-stacking interaction, its fluorescence was adequately quenched because the graphene acted as a "nanoquencher" of the pyrene rings due to FRET. As a result, in the presence of ConA, competitive binding of ConA with glucose destroyed the π-stacking interaction between the pyrene and graphene, thereby causing the fluorescence recovery. This method was demonstrated the selective sensing of ConA, and the linear range is 2.0 × 10⁻² to 1.0 μM with the linear equation y=1.029x + 0.284 (R = 0.996). The limit of detection for ConA was low to 0.8 nM, and the detection of ConA could be performed in 5 min, indicating that this method could be used for fast, sensitive, and selective sensing of ConA. Such data suggests that the graphene FRET platform is a great potential application for protein-carbohydrate studies, and would be widely applied in drug screening, bimolecular recognition and disease diagnosis.

UI MeSH Term Description Entries
D008320 Maltose A dextrodisaccharide from malt and starch. It is used as a sweetening agent and fermentable intermediate in brewing. (Grant & Hackh's Chemical Dictionary, 5th ed)
D011721 Pyrenes A group of condensed ring hydrocarbons.
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D006108 Graphite An allotropic form of carbon that is used in pencils, as a lubricant, and in matches and explosives. It is obtained by mining and its dust can cause lung irritation. Graphene
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D057230 Limit of Detection Concentration or quantity that is derived from the smallest measure that can be detected with reasonable certainty for a given analytical procedure. Limits of Detection,Detection Limit,Detection Limits
D018625 Microscopy, Atomic Force A type of scanning probe microscopy in which a probe systematically rides across the surface of a sample being scanned in a raster pattern. The vertical position is recorded as a spring attached to the probe rises and falls in response to peaks and valleys on the surface. These deflections produce a topographic map of the sample. Atomic Force Microscopy,Force Microscopy,Scanning Force Microscopy,Atomic Force Microscopies,Force Microscopies,Force Microscopies, Scanning,Force Microscopy, Scanning,Microscopies, Atomic Force,Microscopies, Force,Microscopies, Scanning Force,Microscopy, Force,Microscopy, Scanning Force,Scanning Force Microscopies
D031541 Fluorescence Resonance Energy Transfer A type of FLUORESCENCE SPECTROSCOPY using two FLUORESCENT DYES with overlapping emission and absorption spectra, which is used to indicate proximity of labeled molecules. This technique is useful for studying interactions of molecules and PROTEIN FOLDING. Forster Resonance Energy Transfer

Related Publications

Qiushui Chen, and Weili Wei, and Jin-Ming Lin
January 2003, Bioconjugate chemistry,
Qiushui Chen, and Weili Wei, and Jin-Ming Lin
August 2006, Journal of the American Chemical Society,
Qiushui Chen, and Weili Wei, and Jin-Ming Lin
May 2015, Biosensors & bioelectronics,
Qiushui Chen, and Weili Wei, and Jin-Ming Lin
April 2012, ACS nano,
Qiushui Chen, and Weili Wei, and Jin-Ming Lin
February 2007, Analytica chimica acta,
Qiushui Chen, and Weili Wei, and Jin-Ming Lin
October 2008, Analytical chemistry,
Qiushui Chen, and Weili Wei, and Jin-Ming Lin
January 2012, Biosensors & bioelectronics,
Qiushui Chen, and Weili Wei, and Jin-Ming Lin
August 2007, Analytical chemistry,
Copied contents to your clipboard!