In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. 1990

K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
Department of Neurobiology, University of Texas Health Science Center, Houston 77030.

Oligonucleotide DNA probes were used to determine the distribution of mRNAs encoding the alpha- and beta-subunits of Ca2+/calmodulin-dependent protein kinase type II (CaM-KII) in developing rat brain. The regional and temporal distribution of these mRNAs closely paralleled the distribution and developmental appearance previously reported for their respective protein subunits. alpha-Subunit mRNA was barely detectable in sagittal sections at 4 d postnatal but increased as much as 10-fold in frontal cortex by day 16. beta-Subunit mRNA, on the other hand, was readily detected at 4 d postnatal and changed only slightly during development. Telencephalic structures exhibited the highest levels of CaM-KII mRNA and the brain stem displayed the least. alpha-Subunit mRNA was not observed in cerebellar granule cells and was barely detectable in Purkinje cells, while the beta-mRNA was easily detected in both neuronal types. mRNAs for both alpha- and beta-subunits were present in many neuronal cell bodies; however, only the alpha-subunit mRNA was localized to molecular layers of the hippocampus and lamina I of the frontal cortex. These layers of neuropil are relatively cell sparse and contain extensive dendritic arborizations and synaptic contacts. Since polyribosomes have been observed near hippocampal dendritic spines, the localization of alpha-subunit mRNA to dendrites of pyramidal and dentate granule cells suggests that this subunit is synthesized in situ at postsynaptic sites. The co-localization of translational machinery and high concentrations of CaM-KII in postsynaptic elements suggests an important relationship between alpha-subunit synthesis and the maintenance and plasticity of postsynaptic structures.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide

Related Publications

K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
January 2002, Neuroscience,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
June 1990, Brain research. Developmental brain research,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
April 1988, Biochemical and biophysical research communications,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
October 1994, Journal of biochemistry,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
December 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
January 1990, Advances in second messenger and phosphoprotein research,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
November 1984, Biochemistry,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
June 1996, Journal of biochemistry,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
August 1994, Biochemical and biophysical research communications,
K E Burgin, and M N Waxham, and S Rickling, and S A Westgate, and W C Mobley, and P T Kelly
July 1994, Archives of biochemistry and biophysics,
Copied contents to your clipboard!