Differential modulation of the associated glycine recognition site by competitive N-methyl-D-aspartate receptor antagonists. 1990

J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
Central Nervous System Diseases Research, G.D. Searle & Co., St. Louis, Missouri 63198.

The competitive N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonopentanoate and two other five-atom linkage (C-5) omega-phosphono-alpha-amino acid analogs reduced [3H]glycine binding, in a dose-dependent manner, to a maximum of 45-55%, whereas seven-atom linkage (C-7) analogs had significantly less effect. The IC50 of the C-5 antagonists for the inhibition of [3H]glycine binding closely paralleled their potency both in displacing NMDA-selective L-[3H]glutamate binding and in negatively modulating (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne maleate ([3H]MK-801) binding. Additionally, reduction of glycine binding by the C-5 antagonists was reversed by both NMDA receptor agonists and C-7 competitive NMDA antagonists, providing evidence that the site of action of these C-5 antagonists is the NMDA recognition site, resulting in indirect modulation of the glycine site. These data imply a functional coupling between the NMDA and associated glycine recognition sites and, furthermore, suggest a differential interaction of C-5 and C-7 competitive NMDA antagonists with the NMDA receptor complex.

UI MeSH Term Description Entries
D008297 Male Males
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D014633 Valine A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. L-Valine,L Valine

Related Publications

J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
October 1991, Brain research,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
November 1990, The Journal of physiology,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
December 1998, Proceedings of the National Academy of Sciences of the United States of America,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
August 1992, The Journal of pharmacology and experimental therapeutics,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
January 1991, Biochemical pharmacology,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
March 1990, Journal of neurochemistry,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
January 1994, Brain research,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
October 1996, The Journal of pharmacology and experimental therapeutics,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
November 1991, Neuropharmacology,
J B Monahan, and J P Biesterfeldt, and W F Hood, and R P Compton, and A A Cordi, and M I Vazquez, and T H Lanthorn, and P L Wood
August 1990, Neuropharmacology,
Copied contents to your clipboard!