Exercise-enhanced activation of glycogen synthase in human skeletal muscle. 1990

J F Bak, and O Pedersen
Medical Endocrinological Department III, University Clinic of Internal Medicine, Aarhus, Denmark.

The present study was undertaken to elucidate aspects of the regulatory mechanisms leading to enhanced glucose metabolism and insulin sensitivity of muscle after physical exertion. Biopsies were obtained from the vastus lateralis muscle of healthy volunteers before and after 60 min of bicycle exercise at 60% of their maximal aerobic capacity. Insulin binding to wheat germ agglutinin-purified muscle insulin receptors as well as basal and insulin-stimulated receptor kinase activity toward an exogenous substrate were unaltered by exercise. Muscle glycogen levels diminished from 3.35 +/- 0.26 to 1.85 +/- 0.13 mg/100 mg muscle (P less than 0.01) and the half-maximal activation constant of glycogen synthase for glucose 6-phosphate decreased from 0.62 +/- 0.05 to 0.25 +/- 0.02 mM (P less than 0.001). Total glycogen synthase activity was unchanged. In the absence of phosphatase inhibitors, glucose 6-phosphate-independent glycogen synthase activity of the crude enzyme extract increased during in vitro incubation. The initial rate of activation (through dephosphorylations) of glycogen synthase was 0.18 +/- 0.06 vs. 0.37 +/- 0.03 U.min-1.mg-1 protein before and after exercise, respectively (P less than 0.02). The total as well as the glycogen-associated phosphoprotein phosphatase activity was, however, unaffected by exercise.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007657 Ketone Bodies The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain. Acetone Bodies,Bodies, Acetone,Bodies, Ketone
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010765 Phosphorylase Phosphatase An enzyme that deactivates glycogen phosphorylase a by releasing inorganic phosphate and phosphorylase b, the inactive form. EC 3.1.3.17. Glycogen Phosphorylase Phosphatase,Phosphatase, Glycogen Phosphorylase,Phosphatase, Phosphorylase,Phosphorylase Phosphatase, Glycogen
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

J F Bak, and O Pedersen
June 1979, The American journal of physiology,
J F Bak, and O Pedersen
August 2003, Acta physiologica Scandinavica,
J F Bak, and O Pedersen
June 2004, Biochemical and biophysical research communications,
J F Bak, and O Pedersen
October 1982, Molecular and cellular biochemistry,
J F Bak, and O Pedersen
October 2000, Journal of applied physiology (Bethesda, Md. : 1985),
J F Bak, and O Pedersen
July 1977, Metabolism: clinical and experimental,
J F Bak, and O Pedersen
January 1973, Biochimica et biophysica acta,
J F Bak, and O Pedersen
February 1997, Biochemical Society transactions,
Copied contents to your clipboard!