Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes. 1990

M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
Department of Radiology, Medical College of Wisconsin, Milwaukee 53226.

Rotational diffusion of androstane spin-label (ASL), a sterol analogue, in various phosphatidylcholine (PC)-cholesterol membranes was systematically studied by computer simulation of steady-state ESR spectra as a function of the chain length and unsaturation of the alkyl chains, cholesterol mole fraction, and temperature for a better understanding of phospholipid-cholesterol and cholesterol-cholesterol interactions. Special attention was paid to the differences in the cholesterol effects on ASL motion between saturated and unsaturated PC membranes. ASL motion in the membrane was treated as Brownian rotational diffusion of a rigid rod within the confines of a cone imposed by the membrane environment. The wobbling rotational diffusion constant of the long axis, its activation energy, and the cone angle of the confines were obtained for various PC-cholesterol membranes in the liquid-crystalline phase. Cholesterol decreases both the cone angle and the wobbling rotational diffusion constant for ASL in all PC membranes studied in this work. The cholesterol effects are the largest in DMPC membranes. An increase of cholesterol mole fraction from 0 to 30% decreases the rotational diffusion constant by a factor of 9-15 (depending on temperature) and the cone angle by a factor of about 2. In dioleoyl-PC membranes, addition of 30 mol % cholesterol reduces both the rotational diffusion constant and the cone angle of ASL by factors of approximately 2.5 and approximately 1.3, respectively, while it was previously found to cause only modest effects on the motional freedom of phospholipid analogue spin probes [Kusumi, A., Subczynski, W. K., Pasenkiewicz-Gierula, M., Hyde, J. S., & Merkle, H. (1986) Biochim. Biophys. Acta 854, 307-317]. It is proposed that fluid-phase microimmiscibility takes place in dioleoyl-PC-cholesterol membranes at physiological temperatures, which induces cholesterol-rich domains in the membrane, partially due to the steric nonconformability between the rigid fused-ring structure of cholesterol and the 30 degrees bend at the C9-C10 cis double bond of the alkyl chains of dioleoyl-PC. The mechanism by which cholesterol influences the lipid dynamics in the membrane is different between saturated and unsaturated PC membranes.

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004134 Dimyristoylphosphatidylcholine A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes. Dimyristoyllecithin,1,2-Dimyristoyl-glycero-3-phosphorylcholine,1,2-Ditetradecanoyl-glycero-3-phosphocholine,1,2-Ditetradecyl-glycero-3-phosphocholine,DMCP,DMPC,1,2 Dimyristoyl glycero 3 phosphorylcholine,1,2 Ditetradecanoyl glycero 3 phosphocholine,1,2 Ditetradecyl glycero 3 phosphocholine
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
November 2018, Langmuir : the ACS journal of surfaces and colloids,
M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
November 1976, FEBS letters,
M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
March 2000, Chaos (Woodbury, N.Y.),
M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
June 1991, Biochemistry,
M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
June 1989, Proceedings of the National Academy of Sciences of the United States of America,
M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
October 1992, Biophysical journal,
M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
January 1986, Biochimica et biophysica acta,
M Pasenkiewicz-Gierula, and W K Subczynski, and A Kusumi
January 1974, Annual review of biophysics and bioengineering,
Copied contents to your clipboard!