Deletion analysis of the mini-P1 plasmid origin of replication and the role of Escherichia coli DnaA protein. 1990

S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

The mini-P1 plasmid origin of replication is contained on a 246 base pair (bp) piece of DNA. At one end there are five 19-bp binding sites for the P1 initiator protein, RepA, and near the other end there are two 9-bp DnaA protein-binding sites. To further define the limits of the origin, we cloned the origin region in M13 and constructed deletions of either end. We sequenced the DNA and tested the replicative form I DNA of the deletion phages for their ability to support RepA-dependent DNA replication in an in vitro system. The origin that is functional in vitro could be reduced to 202 bp. It includes three intact and one incomplete RepA-binding sites at one end and the two DnaA-binding sites at the other end. When the two naturally occurring DnaA-binding sites were replaced with one or two synthetic sites, only the construction containing two sites was active in vitro. We found that the minimal origin that is functional in vivo contains all of the five RepA and the two DnaA-binding sites. Mini-P1 plasmid replication both in vivo and in vitro requires two initiator proteins, the Escherichia coli DnaA protein and the P1 RepA protein. We have found that the ADP form of DnaA is as active as the ATP form of the protein in the in vitro replication of mini-P1. In contrast, only the ATP form is active for in vitro replication of plasmids carrying the E. coli origin (Bramhill, D., and Kornberg, A. (1988) Cell 52, 743-755).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
March 1991, Molecular & general genetics : MGG,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
June 1999, The Journal of biological chemistry,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
November 1997, The EMBO journal,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
February 1992, Nucleic acids research,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
June 1987, Proceedings of the National Academy of Sciences of the United States of America,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
April 1997, Molecules and cells,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
April 1987, Journal of bacteriology,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
October 1983, Proceedings of the National Academy of Sciences of the United States of America,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
December 2004, The Journal of biological chemistry,
S Wickner, and J Hoskins, and D Chattoraj, and K McKenney
December 1993, The EMBO journal,
Copied contents to your clipboard!