Metabolism of lipoprotein acylglycerols by liver parenchymal cells. 1979

M R El-Maghrabi, and M Waite, and L L Rudel, and V L King

We investigated the metabolism by hepatocyte suspensions of the acylglycerols in lipoprotein remnants as well as those associated with albumin and low or high density lipoproteins. Remnants, albumin and plasma lipoproteins, rich in monoacylglycerol were prepared by short-term incubations of radio-labeled chylomicra or very low density lipoproteins with extrahepatic lipoprotein lipase in the presence of albumin and low and high density lipoproteins. We demonstrated that liver parenchymal cells contain an active monoacylglycerol acyltransferase that is located on the extracellular surface of the cell plasma membrane. Further, the enzyme is capable of degrading the monoacylglycerol in all the above forms. Triacylglycerol in intact chylomicra and very low density lipoproteins were not metabolized by the cells to any appreciable degree. The degradation of the remnant triacylglycerol appeared to depend solely on the activity of the lipoprotein lipase bound to the lipoprotein remnants. Little uptake of intact lipoprotein acylglycerols by the hepatocytes was observed; instead, hydrolysis of the substrates in the medium always preceded the uptake of the products. The products were then utilized for the synthesis of triacylglycerol and phospholipid within the cells.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005989 Glycerides GLYCEROL esterified with FATTY ACIDS. Acylglycerol,Acylglycerols

Related Publications

M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
March 1977, Biochimica et biophysica acta,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
January 1981, Bulletin europeen de physiopathologie respiratoire,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
November 1982, The Biochemical journal,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
December 1979, Biochemical pharmacology,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
October 1974, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
February 1980, Biochemical and biophysical research communications,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
October 1974, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
December 1985, The Biochemical journal,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
August 1976, The Journal of biological chemistry,
M R El-Maghrabi, and M Waite, and L L Rudel, and V L King
February 1979, Biochimica et biophysica acta,
Copied contents to your clipboard!