Selective blockade by scopolamine of synaptic responses in cat's caudate nucleus and its modification by lesions of the substantia nigra. 1978

R Spehlmann, and K Norcross, and E J Grimmer

Because it is commonly believed that acetylcholine is a synaptic transmitter in the caudate nucleus and that the reduction of striatal biogenic amines in Parkinson's disease leads to acetylcholine supersensitivity in the caudate nucleus, we investigated the effects of the muscarinic blocking agent scopolamine on synaptic responses of neurons in the intact feline caudate nucleus and in the caudate nucleus depleted of dopamine by long-standing nigrostriatal lesions. In the intact caudate nucleus, micro-iontophoretic application of scopolamine selectively blocked the neuronal responses to stimulation of the caudate nucleus near the recording site without affecting the responses to stimulation of the sensorimotor cortex or the substantia nigra in the same fashion. This suggests that acetylcholine is a synaptic transmitter of caudate interneurons. Responses to thalamic stimuli were also blocked by scopolamine, suggesting that acetylcholine may be a transmitter of thalamic afferents although the course of these afferents is unclear. In the dopamine-depleted caudate nucleus scopolamine was more effective than in the intact caudate nucleus blocking the neuronal responses to stimulation of the caudate nucleus. This greater blocking effect by scopolamine suggests an increased effect of endogenous acetylcholine in this response and supports previous observations of an increased excitatory effect of iontophoretic acetylcholine in the dopamine-depleted caudate nucleus. These results suggest that the acetylcholine supersensitivity which follows nigrostriatal degeneration may be due to increased effectiveness of synaptic transmission by cholinergic interneurons in the caudate nucleus.

UI MeSH Term Description Entries
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009407 Nerve Block Interruption of NEURAL CONDUCTION in peripheral nerves or nerve trunks by the injection of a local anesthetic agent (e.g., LIDOCAINE; PHENOL; BOTULINUM TOXINS) to manage or treat pain. Chemical Neurolysis,Chemodenervation,Nerve Blockade,Block, Nerve,Blockade, Nerve,Blockades, Nerve,Blocks, Nerve,Chemical Neurolyses,Chemodenervations,Nerve Blockades,Nerve Blocks,Neurolyses, Chemical,Neurolysis, Chemical
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

R Spehlmann, and K Norcross, and E J Grimmer
January 1977, Acta physiologica latino americana,
R Spehlmann, and K Norcross, and E J Grimmer
October 1972, Journal of comparative and physiological psychology,
R Spehlmann, and K Norcross, and E J Grimmer
November 1972, Experimental neurology,
R Spehlmann, and K Norcross, and E J Grimmer
October 1971, The Journal of physiology,
R Spehlmann, and K Norcross, and E J Grimmer
July 2005, The European journal of neuroscience,
R Spehlmann, and K Norcross, and E J Grimmer
September 1976, Neuropharmacology,
R Spehlmann, and K Norcross, and E J Grimmer
September 1984, Journal of neurochemistry,
Copied contents to your clipboard!