Electron cryo-microscopic analysis of crystalline cytochrome oxidase. 1990

J M Valpuesta, and R Henderson, and T G Frey
Medical Research Council, Laboratory of Molecular Biology, Cambridge, U.K.

The structure of cytochrome oxidase from beef heart mitochondria has been analysed by cryo-electron microscopy of vesicle crystals of the space group p22(1)2(1), with cell dimensions a = 102 A, b = 123 A, gamma = 90 degrees. Several methods of specimen preparation were applied to the vesicular two-dimensional crystals in the electron microscope, to ensure that the structure was preserved to the maximum resolution. The two most informative density maps were from specimens embedded in ice and from negative staining in a 1:1 mixture of glucose and uranyl acetate. The three-dimensional structure of the ice-embedded molecule shows a single, well resolved, but convoluted density, which represents in size and shape one cytochrome oxidase dimer. At the bottom of the molecule, a substantial part of the protein is embedded in the lipid bilayer of the vesicle. The molecule then extends upwards, out of the bilayer, into the internal space within the vesicle. Here, the structure first passes through a region within the molecule containing a hollow cavity that lies roughly at the centre of mass of the dimer, and then branches into two well-resolved halves at some distance from the membrane. The negatively stained structure, in contrast, shows a stain-excluding region in the centre of the vesicle at the level of the cavity in the ice-embedded structure, but otherwise has a similar overall external shape. In addition, there is a small rotation of the whole molecule by approximately 25 degrees relative to the orientation of ice-embedded specimens. We interpret these differences to mean that the central cavity seen in the ice-embedded structure is too small to allow the stain to penetrate during the drying process and that the drying process causes the rotation. The structures described here are consistent with one another and allow an interpretation at higher resolution than from previous work.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J M Valpuesta, and R Henderson, and T G Frey
November 1982, Journal of molecular biology,
J M Valpuesta, and R Henderson, and T G Frey
January 1984, Ultramicroscopy,
J M Valpuesta, and R Henderson, and T G Frey
September 2022, Chemical reviews,
J M Valpuesta, and R Henderson, and T G Frey
March 1973, Biochimica et biophysica acta,
J M Valpuesta, and R Henderson, and T G Frey
March 1987, Biophysical journal,
J M Valpuesta, and R Henderson, and T G Frey
January 1980, Cellular and molecular biology, including cyto-enzymology,
J M Valpuesta, and R Henderson, and T G Frey
August 1972, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J M Valpuesta, and R Henderson, and T G Frey
January 1987, The Journal of comparative neurology,
J M Valpuesta, and R Henderson, and T G Frey
April 1996, Microscopy research and technique,
J M Valpuesta, and R Henderson, and T G Frey
January 1984, The Journal of comparative neurology,
Copied contents to your clipboard!