Inhibition of GTPase activating protein stimulation of Ras-p21 GTPase by the Krev-1 gene product. 1990

M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
Max-Planck-Institute für medizinische Forschung, Abteilung Biophysik, Heidelberg, Germany.

Krev-1 is known to suppress transformation by ras. However, the mechanism of the suppression is unclear. The protein product of Krev-1, Rap1A-p21, is identical to Ras-p21 proteins in the region where interaction with guanosine triphosphatase (GTPase) activating protein (GAP) is believed to occur. Therefore, the ability of GAP to interact with Rap1A-p21 was tested. Rap1A-p21 was not activated by GAP but bound tightly to GAP and was an effective competitive inhibitor of GAP-mediated Ras-GTPase activity. Binding of GAP to Rap1A-p21 was strictly guanosine triphosphate (GTP)-dependent. The ability of Rap1A-p21 to bind tightly to GAP may account for Krev-1 suppression of transformation by ras. This may occur by preventing interaction of GAP with Ras-p21 or with other cellular proteins necessary for GAP-mediated Ras GTPase activity.

UI MeSH Term Description Entries
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D015689 Oncogene Protein p21(ras) Transforming protein encoded by ras oncogenes. Point mutations in the cellular ras gene (c-ras) can also result in a mutant p21 protein that can transform mammalian cells. Oncogene protein p21(ras) has been directly implicated in human neoplasms, perhaps accounting for as much as 15-20% of all human tumors. This enzyme was formerly listed as EC 3.6.1.47. p21(v-Ha-ras),p21(v-Ki-ras),ras Oncogene Protein p21,p21 Transforming Viral Protein,p21 v-H-ras,p21 v-Ha-ras,p21 v-Ki-ras,p21 v-ras,p21(v-H-ras),p21(v-K-ras),ras Oncogene Product p21,ras Oncogene p21 Product,p21 v H ras,p21 v Ha ras,p21 v Ki ras,p21 v ras,v-H-ras, p21,v-Ha-ras, p21,v-Ki-ras, p21,v-ras, p21
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory
D020558 GTP Phosphohydrolases Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-. GTPase,GTPases,Guanosine Triphosphate Phosphohydrolases,Guanosinetriphosphatases,GTP Phosphohydrolase,Phosphohydrolase, GTP,Phosphohydrolases, GTP,Phosphohydrolases, Guanosine Triphosphate,Triphosphate Phosphohydrolases, Guanosine

Related Publications

M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
May 1991, Biochemical and biophysical research communications,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
May 1990, The Journal of biological chemistry,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
March 1992, Oncogene,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
August 1992, The Journal of biological chemistry,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
January 1988, Cold Spring Harbor symposia on quantitative biology,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
January 1991, Cold Spring Harbor symposia on quantitative biology,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
July 1992, Biochemistry,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
June 1991, Cell,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
April 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
M Frech, and J John, and V Pizon, and P Chardin, and A Tavitian, and R Clark, and F McCormick, and A Wittinghofer
May 2005, The protein journal,
Copied contents to your clipboard!