Mode of blockade by MK-801 of N-methyl-D-aspartate-induced increase in intracellular Ca2+ in cultured mouse hippocampal neurons. 1990

M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
Division of Regulation of Macromolecular Function, Osaka University, Japan.

Microfluorometry with fura-2 was applied to study the action of the anticonvulsant (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) on N-methyl-D-aspartate (NMDA)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured mouse hippocampal neurons. MK-801 caused a potent and long-lasting blockade of the NMDA-activated [Ca2+]i elevation in a selective manner, not affecting the [Ca2+]i rise induced by quisqualate or kainate. Blockade and recovery from the blockade by MK-801 showed use dependency; the degree of blockade was dependent on the presence of NMDA. The use-dependent onset of antagonism was, however, highly sensitive to the bath temperature. MK-801 applied in the absence of NMDA had no effect on the response to subsequent application of NMDA at 22 degrees C, whereas it reduced the subsequent response to NMDA significantly at 37 degrees C. MK-801 interacted with the receptor-ion channel complex even when Mg2+, which is considered to block the open channel, had already blocked the NMDA-induced [Ca2+]i. The recovery from blockade by MK-801 was not accelerated by the application of 10 mM Mg2+ for 5 min. These results suggest that MK-801 can gain access to its binding site in the absence of NMDA at physiological temperature, and that this binding site is distinct from that for Mg2+.

UI MeSH Term Description Entries
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003986 Dibenzocycloheptenes A family of tricyclic hydrocarbons whose members include many of the commonly used tricyclic antidepressants (ANTIDEPRESSIVE AGENTS, TRICYCLIC).
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate

Related Publications

M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
January 2003, Physiological research,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
November 1992, The Journal of pharmacology and experimental therapeutics,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
January 1990, Psychopharmacology,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
April 1992, The American journal of physiology,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
March 1991, Antimicrobial agents and chemotherapy,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
September 1994, Brain research. Developmental brain research,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
March 1988, Brain research,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
August 1989, Brain research. Developmental brain research,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
February 1993, Brain research,
M Yuzaki, and A Miyawaki, and K Akita, and Y Kudo, and A Ogura, and H Ino, and K Mikoshiba
December 2002, Journal of neurochemistry,
Copied contents to your clipboard!