surA, an Escherichia coli gene essential for survival in stationary phase. 1990

A Tormo, and M Almirón, and R Kolter
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115.

Mutations in genes not required for exponential growth but essential for survival in stationary phase were isolated in an effort to understand the ability of wild-type Escherichia coli cells to remain viable during prolonged periods of nutritional deprivation. The phenotype of these mutations is referred to as Sur- (survival) and the genes are designated sur. The detailed analysis of one of these mutations is presented here. The mutation (surA1) caused by insertion of a mini-Tn10 element defined a new gene located near 1 min on the E. coli chromosome. It was located directly upstream of pdxA and formed part of a complex operon. Evidence is presented supporting the interpretation that cells harboring the surA1 mutation die during stationary phase while similar insertion mutations in other genes of the operon do not lead to a Sur- phenotype. Strains harboring surA1 had a normal doubling time in both rich and minimal medium, but cultures lost viability after several days in stationary phase. Analysis of revertants and suppressors of surA1, which arose after prolonged incubation in stationary phase, indicates that DNA rearrangements (excisions and duplications) occurred in cultures of this strain even when the viable-cell counts were below 10(2) cells per ml. Cells containing suppressing mutations then grew in the same culture to 10(8) cells per ml, taking over the population. The implications of these observations to our understanding of stationary-phase mutagenesis are discussed.

UI MeSH Term Description Entries
D007612 Kanamycin Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components. Kanamycin A,Kanamycin Sulfate,Kantrex
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

A Tormo, and M Almirón, and R Kolter
December 2011, EcoSal Plus,
A Tormo, and M Almirón, and R Kolter
January 2015, Acta naturae,
A Tormo, and M Almirón, and R Kolter
March 1994, Proceedings of the National Academy of Sciences of the United States of America,
A Tormo, and M Almirón, and R Kolter
January 2005, Revista latinoamericana de microbiologia,
A Tormo, and M Almirón, and R Kolter
December 2002, Current opinion in microbiology,
A Tormo, and M Almirón, and R Kolter
March 1996, Journal of bacteriology,
A Tormo, and M Almirón, and R Kolter
June 2004, Research in microbiology,
A Tormo, and M Almirón, and R Kolter
January 2013, Advances in applied microbiology,
A Tormo, and M Almirón, and R Kolter
October 1994, Journal of bacteriology,
Copied contents to your clipboard!