One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? 2011

Ramya Viswanathan, and David T Auble
Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.

The TATA-binding protein (TBP) is a major target for transcriptional regulation. Mot1, a Swi2/Snf2-related ATPase, dissociates TBP from DNA in an ATP dependent process. The experimental advantages of this relatively simple reaction have been exploited to learn more about how Swi2/Snf2 ATPases function biochemically. However, many unanswered questions remain and fundamental aspects of the Mot1 mechanism are still under debate. Here, we review the available data and integrate the results with structural and biochemical studies of related enzymes to derive a model for Mot1's catalytic action consistent with the broad literature on enzymes in this family. We propose that the Mot1 ATPase domain is tethered to TBP by a flexible, spring-like linker of alpha helical hairpins. The linker juxtaposes the ATPase domain such that it can engage duplex DNA on one side of the TBP-DNA complex. This allows the ATPase to employ short-range, nonprocessive ATP-driven DNA tracking to pull or push TBP off its DNA site. DNA translocation is a conserved property of ATPases in the broader enzyme family. As such, the model explains how a structurally and functionally conserved ATPase domain has been put to use in a very different context than other enzymes in the Swi2/Snf2 family. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.

UI MeSH Term Description Entries
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D042002 Chromatin Assembly and Disassembly The mechanisms effecting establishment, maintenance, and modification of that specific physical conformation of CHROMATIN determining the transcriptional accessibility or inaccessibility of the DNA. Chromatin Remodeling,Chromatin Assembly,Chromatin Disassembly,Chromatin Modeling,Chromatin Disassemblies,Disassembly, Chromatin,Remodeling, Chromatin
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins

Related Publications

Ramya Viswanathan, and David T Auble
October 2020, Nature reviews. Molecular cell biology,
Ramya Viswanathan, and David T Auble
January 2002, Evolution & development,
Ramya Viswanathan, and David T Auble
October 2018, American journal of respiratory and critical care medicine,
Ramya Viswanathan, and David T Auble
October 2019, The Journal of clinical investigation,
Ramya Viswanathan, and David T Auble
December 2015, Diabetes therapy : research, treatment and education of diabetes and related disorders,
Ramya Viswanathan, and David T Auble
April 1997, American journal of community psychology,
Ramya Viswanathan, and David T Auble
January 1999, Molecular and cellular biology,
Ramya Viswanathan, and David T Auble
January 2015, PloS one,
Ramya Viswanathan, and David T Auble
May 2016, Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology,
Ramya Viswanathan, and David T Auble
February 2024, Tissue barriers,
Copied contents to your clipboard!