The mechanism of leukotriene B4 export from human polymorphonuclear leukocytes. 1990

B K Lam, and L Gagnon, and K F Austen, and R J Soberman
Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.

Recently, we characterized the export of leukotriene (LT) C4 from human eosinophils as a carrier-mediated process (Lam, B. K., Owen, W. F., Jr., Austen, K. F., and Soberman, R. J. (1989) J. Biol. Chem. 264, 12885-12889). To determine whether a similar mechanism regulates the release of leukotriene B4 (LTB4), human polymorphonuclear leukocytes (PMN) were preloaded with LTB4 by incubation with 25 microM leukotriene A4 (LTA4) at 0 degrees C for 60 min. PMN converted LTA4 to LTB4 in a time-dependent manner as determined by resolution of products by reverse-phase high performance liquid chromatography and quantitation by integrated optical density. When PMN preloaded with LTB4 were resuspended in buffer at 37 degrees C for 0-90 s, there occurred a time-dependent release of LTB4 but little formation or release of 20-hydroxy-LTB4 and 20-carboxy-LTB4. When PMN were preloaded with increasing amounts of intracellular LTB4 by incubation with 3.1-50.0 microM LTA4 and were then resuspended in buffer at 37 degrees C for 20 s, there occurred a concentration-dependent and saturable release of LTB4 with a Km of 798 pmol/10(7) cells and a Vmax of 383 pmol/10(7) cells/20 s. The release of LTB4 was temperature-sensitive with a Q10 of 3.0 and an energy of activation of 19.9 kcal/mol. The rate of LTB4 release at 37 degrees C is about 50 times the rate of 20-carboxy-LTB4 release. PMN preloaded with LTB4 and resuspended at 0 degree C for 1-60 min in the presence of 30 microM LTA5 progressively converted LTA5 to LTB5. The rate of LTB4 release at 0 degree C was inhibited over the entire time period, peaking at about 50% at 30 min. These results indicate that the release of LTB4 from PMN is a carrier-mediated process that is distinct from its biosynthesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

B K Lam, and L Gagnon, and K F Austen, and R J Soberman
July 1996, The Journal of biological chemistry,
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
January 1988, Methods in enzymology,
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
March 1984, The Journal of biological chemistry,
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
April 1984, Biochimica et biophysica acta,
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
January 1990, Advances in experimental medicine and biology,
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
January 1991, Advances in prostaglandin, thromboxane, and leukotriene research,
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
October 1982, Journal of immunology (Baltimore, Md. : 1950),
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
January 1985, Advances in prostaglandin, thromboxane, and leukotriene research,
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
March 1986, Inflammation,
B K Lam, and L Gagnon, and K F Austen, and R J Soberman
July 1994, Pediatric research,
Copied contents to your clipboard!