Lipid-protein interaction in reconstituted cytochrome c oxidase/phospholipid membranes. 1978

A Seelig, and J Seelig

Deuterium and 31P nuclear magnetic resonance have been employed in an investigation of the effect of cytochrome c oxidase (EC 1.9.3.1) on the structure of lecithin bilayers. Cytochrome c oxidase was isolated from beef heart mitochondria in lipid-free form and reconstituted as a functional enzyme in bilayers composed of synthetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. Two separate reconstitution experiments were performed in which the lipid was selectively deuterated either at the C-5' or at the C-14' segment of the palmitic acyl chain. The phospholipid-to-protein ratio of both reconstituted complexes was 0.74 (mg/mg), corresponding to about 200 molecules lipid per molecule cytochrome c oxidase. The deuterium quadrupole splitting deltanuQ, and the phosphorus chemical shielding anisotropy, deltasigma, of the cytochrome c oxidase-phospholipid recombinants were measured as a function of temperature and compared to the results obtained for the pure lipid membrane without protein for the pure lipid membrane without protein. deltanuQ and deltasigma are highly sensitive to the structural organization of the lipid membrane and these measurements demonstrate that the incorporation of cytochrome c oxidase into phosphatidylcholine bilayers leads to a more disordered conformational state of the lipids. This result can be explained by a rapid exchange between lipids in direct contact with hydrophobic protein and those further away from it (exchange rate greater than 10(4) Hz). The irregular protein surface is sensed by all lipid molecules and induces a more disordered bilayer structure. In contrast to previous interpretations, our measurements do not suggest a special type of boundary lipid.

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

A Seelig, and J Seelig
August 1980, The Journal of biological chemistry,
A Seelig, and J Seelig
January 1976, Doklady Akademii nauk SSSR,
A Seelig, and J Seelig
January 1973, Journal of supramolecular structure,
A Seelig, and J Seelig
November 2009, Chemistry and physics of lipids,
Copied contents to your clipboard!