Elevated extracellular K+ enhances arachidonic acid release in MDCK-D1 cells. 1990

M J Howard, and P A Insel
Department of Pharmacology, University of California, San Diego, La Jolla 92093.

Depolarization can alter the expression of membrane receptors and change certain receptor-mediated events, but previous studies have not assessed the impact of depolarization on generation of arachidonic acid and its metabolites (AA) in nonexcitable tissues. We assessed AA generation in Madin-Darby canine kidney (MDCK) cells grown for 3 days in increased extracellular [K+], which is known to acutely depolarize these cells. Growth under these conditions resulted in decreases in the number of alpha 1-adrenergic receptors (alpha 1 AR), a small decrease in receptor-mediated phosphoinositide hydrolysis, but increases in alpha 1 AR-mediated prostaglandin E2 formation and AA release. Calcium ionophore (A23187)-, melittin-, and bradykinin-stimulated AA release were also enhanced. The reduction in alpha 1 AR number and increased AA release were substantially reduced or eliminated when K(+)-treated cells were grown in the absence of extracellular calcium. The results provide evidence that hormone-stimulated AA release and prostaglandin production can be enhanced by chronic exposure to elevated extracellular K+ concentration, perhaps as a consequence of a depolarization-induced enhancement in phospholipase A2 activity. The results provide evidence for the parallel and independent regulation of the pathways for receptor-mediated phosphoinositide hydrolysis (phospholipase C activation) and AA release (phospholipase A2 activation) in MDCK cells.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008555 Melitten Basic polypeptide from the venom of the honey bee (Apis mellifera). It contains 26 amino acids, has cytolytic properties, causes contracture of muscle, releases histamine, and disrupts surface tension, probably due to lysis of cell and mitochondrial membranes. Melittin,Mellitin
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

M J Howard, and P A Insel
November 1997, The American journal of physiology,
M J Howard, and P A Insel
October 1996, The American journal of physiology,
M J Howard, and P A Insel
May 1988, Biochemical and biophysical research communications,
M J Howard, and P A Insel
October 2001, Canadian journal of physiology and pharmacology,
M J Howard, and P A Insel
January 1983, Neurochemistry international,
M J Howard, and P A Insel
August 1991, Biochemical and biophysical research communications,
M J Howard, and P A Insel
May 2001, American journal of physiology. Cell physiology,
Copied contents to your clipboard!