Coordination of mitochondrial biogenesis by thyroid hormone. 2011

Joachim M Weitzel, and K Alexander Iwen
Forschungsbereich Fortpflanzungsbiologie, Leibniz-Institut für Nutztierbiologie, FBN Dummerstorf, Germany. weitzel@fbn-dummerstorf.de

Thyroid hormone (TH) has profound influence on metabolism that is closely linked to its effect on mitochondrial biogenesis and function. After a single injection of TH into mammals, physiological alterations (e.g. changes in oxygen consumption rates) are detectable after a lag period of ∼48h. This characteristic lag period is somewhat surprising since non-genomic responses are already detectable within minutes, and first genomic responses within some hours after administration of TH. This review provides a model to explain the characteristic lag period: TH regulates a first series of TH target genes via classical activation of gene expression by binding to thyroid hormone response elements. Some directly regulated target genes serve as intermediate factors and subsequently regulate a second series of indirect TH target genes. Intermediate factors are transcription factors (such as NRF-1, NRF-2 and PPARγ) and transcriptional coactivators (such as PGC-1α and PGC-1β). In concert with several post-translational modifications, these intermediate factors orchestrate the physiological response to thyroid hormone in vivo.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001678 Organelle Biogenesis The natural growth and development within living CELLS. Mitochondrial Biogenesis,Biogeneses, Organelle,Biogenesis, Mitochondrial,Biogenesis, Organelle,Organelle Biogeneses
D013961 Thyroid Gland A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively. Thyroid,Gland, Thyroid,Glands, Thyroid,Thyroid Glands,Thyroids
D013963 Thyroid Hormones Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs. Thyroid Hormone,Hormone, Thyroid,Hormones, Thyroid

Related Publications

Joachim M Weitzel, and K Alexander Iwen
January 2010, Vascular pharmacology,
Joachim M Weitzel, and K Alexander Iwen
April 1980, Journal of bioenergetics and biomembranes,
Joachim M Weitzel, and K Alexander Iwen
August 1989, Acta endocrinologica,
Joachim M Weitzel, and K Alexander Iwen
November 1991, Seikagaku. The Journal of Japanese Biochemical Society,
Joachim M Weitzel, and K Alexander Iwen
March 1989, European journal of biochemistry,
Joachim M Weitzel, and K Alexander Iwen
January 2014, Frontiers in plant science,
Copied contents to your clipboard!