Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. 1990

S Cusack, and W Doster
EMBL Grenoble Outstation, France.

Inelastic neutron scattering spectra of myoglobin hydrated to 0.33 g water (D2O)/g protein have been measured in the low frequency range (1-150 cm-1) at various temperatures between 100 and 350 K. The spectra at low temperatures show a well-resolved maximum in the incoherent dynamic structure factor Sinc(q, omega) at approximately 25 cm-1 and no elastic broadening. This maximum becomes gradually less distinct above 180 K due to the increasing amplitude of quasielastic scattering which extends out to 30 cm-1. The vibrational frequency distribution derived independently at 100 and 180 K are very similar, suggesting harmonic behavior at these temperatures. This result has been used to separate the vibrational motion from the quasielastic motion at temperatures above 180 K. The form of the density of states of myoglobin is discussed in relation to that of other amorphous systems, to theoretical calculations of low frequency modes in proteins, and to previous observations by electron-spin relaxation of fractal-like spectral properties of proteins. The onset of quasielastic scattering above 180 K is indicative of a dynamic transition of the system and correlates with an anomalous increase in the atomic mean-squared displacements observed by Mössbauer spectroscopy (Parak, F., E. W. Knapp, and D. Kucheida. 1982. J. Mol. Biol. 161: 177-194.) and inelastic neutron scattering (Doster, W., S. Cusack, and W. Petry, 1989. Nature [Lond.]. 337: 754-756.) Similar behavior is observed for a hydrated powder of lysozyme suggesting that the low frequency dynamics of globular proteins have common features.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D009502 Neutrons Electrically neutral elementary particles found in all atomic nuclei except light hydrogen; the mass is equal to that of the proton and electron combined and they are unstable when isolated from the nucleus, undergoing beta decay. Slow, thermal, epithermal, and fast neutrons refer to the energy levels with which the neutrons are ejected from heavier nuclei during their decay. Neutron
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D004548 Elasticity Resistance and recovery from distortion of shape.
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014732 Vibration A continuing periodic change in displacement with respect to a fixed reference. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Vibrations
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

S Cusack, and W Doster
August 1987, Biophysical journal,
S Cusack, and W Doster
February 2007, Journal of the Royal Society, Interface,
S Cusack, and W Doster
February 1990, Physical review. B, Condensed matter,
S Cusack, and W Doster
January 1991, European biophysics journal : EBJ,
S Cusack, and W Doster
December 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Copied contents to your clipboard!