Cloning and characterization of the segment polarity gene cubitus interruptus Dominant of Drosophila. 1990

T V Orenic, and D C Slusarski, and K L Kroll, and R A Holmgren
Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208.

The segment polarity mutation, cubitus interruptus Dominant (ciD), of Drosophila melanogaster causes defects in the posterior half of every embryonic segment. We cloned sequences from the ciD region on the proximal fourth chromosome by "tagging" the gene with the transposable element P. Genetic and molecular evidence indicates that the P-element insertions, which all occurred within the same restriction fragment, are in 5'-regulatory regions of the ciD gene within 3 kb of the first exon of its transcript. The putative ciD transcript was identified on the basis of its absence in homozygous ciD embryos. Its spatial pattern of expression during development is unusual in that, unlike most other segmentation genes, it exhibits uniform expression throughout cellular blastoderm and gastrulation and does not resolve into a periodic pattern until the end of the fast phase of germ-band elongation when it is present in 15 broad segmentally repeating stripes along the anterior-posterior axis of the embryo. Registration of the ciD stripes of expression relative to the stripes of other segment polarity genes shows that ciD is expressed in the anterior three-quarters of every segment. This registration does not correlate with the pattern defects observed in ciD mutants. Sequence analysis indicates that the protein encoded by the ciD transcript contains a domain of five tandem amino acid repeats that have sequence similarity to the zinc-finger repeats of the Xenopus transcription factor TFIIIA and that share the highest degree of identity with the human zinc-finger protein GLI, which has been found to be amplified in several human glioblastomas.

UI MeSH Term Description Entries
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T V Orenic, and D C Slusarski, and K L Kroll, and R A Holmgren
November 1987, Developmental biology,
T V Orenic, and D C Slusarski, and K L Kroll, and R A Holmgren
October 1998, Nucleic acids research,
T V Orenic, and D C Slusarski, and K L Kroll, and R A Holmgren
August 2001, Developmental biology,
T V Orenic, and D C Slusarski, and K L Kroll, and R A Holmgren
December 2000, Development (Cambridge, England),
T V Orenic, and D C Slusarski, and K L Kroll, and R A Holmgren
January 1995, Genetics,
T V Orenic, and D C Slusarski, and K L Kroll, and R A Holmgren
August 2002, International journal of molecular medicine,
T V Orenic, and D C Slusarski, and K L Kroll, and R A Holmgren
June 1995, Development (Cambridge, England),
Copied contents to your clipboard!