Inhibition of cyclic nucleotide phosphodiesterase during exposure to WI-38 cells to prostaglandin E1. 1979

G M Nemecek, and K P Ray, and R W Butcher

Short term incubation of WI-38 cultures with 5.7 micron prostaglandin E1 (PGE1) caused cyclic AMP phosphodiesterase activity in fibroblast homogenates to fall by 25 to 35% as compared to controls. The PGE1-induced decline in phosphodiesterase activity coincided with a rapid increase in intracellular cyclic AMP levels in response to the hormone and was rapidly reversed by washing the cultures free of the prostaglandin before homogenizing the cells. The effect of PGE1 on WI-38 phosphodiesterase activity was localized to the enzyme form(s) present in 27,000 times g supernatant fractions of cell homogenates. These data suggest that the pattern of cyclic AMP accumulation in WI-38 fibroblasts exposed to PGE1 may be related, at least in part, to decreased phosphodiesterase activity during hormone stimulation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D015105 3',5'-Cyclic-AMP Phosphodiesterases Enzymes that catalyze the hydrolysis of CYCLIC AMP to form adenosine 5'-phosphate. The enzymes are widely distributed in animal tissue and control the level of intracellular cyclic AMP. Many specific enzymes classified under this heading demonstrate additional spcificity for 3',5'-cyclic IMP and CYCLIC GMP. 3',5'-Cyclic AMP 5'-Nucleotidohydrolase,3',5'-Cyclic-Nucleotide Phosphodiesterase,CAMP Phosphodiesterase,3',5' Cyclic AMP Phosphodiesterase,3',5'-Cyclic AMP Phosphodiesterase,3',5'-Cyclic Nucleotide Phosphodiesterase,3',5'-Cyclic-AMP Phosphodiesterase,3',5'-Nucleotide Phosphodiesterase,3,5-Cyclic AMP 5-Nucleotidohydrolase,3,5-Cyclic AMP Phosphodiesterase,3',5' Cyclic AMP 5' Nucleotidohydrolase,3',5' Cyclic AMP Phosphodiesterases,3',5' Cyclic Nucleotide Phosphodiesterase,3',5' Nucleotide Phosphodiesterase,3,5 Cyclic AMP 5 Nucleotidohydrolase,3,5 Cyclic AMP Phosphodiesterase,5'-Nucleotidohydrolase, 3',5'-Cyclic AMP,5-Nucleotidohydrolase, 3,5-Cyclic AMP,AMP 5'-Nucleotidohydrolase, 3',5'-Cyclic,AMP 5-Nucleotidohydrolase, 3,5-Cyclic,AMP Phosphodiesterase, 3',5'-Cyclic,AMP Phosphodiesterase, 3,5-Cyclic,Nucleotide Phosphodiesterase, 3',5'-Cyclic,Phosphodiesterase, 3',5'-Cyclic AMP,Phosphodiesterase, 3',5'-Cyclic Nucleotide,Phosphodiesterase, 3',5'-Cyclic-AMP,Phosphodiesterase, 3',5'-Cyclic-Nucleotide,Phosphodiesterase, 3',5'-Nucleotide,Phosphodiesterase, 3,5-Cyclic AMP,Phosphodiesterase, CAMP,Phosphodiesterases, 3',5'-Cyclic-AMP

Related Publications

G M Nemecek, and K P Ray, and R W Butcher
December 1979, Journal of cyclic nucleotide research,
G M Nemecek, and K P Ray, and R W Butcher
October 1975, Biochimica et biophysica acta,
G M Nemecek, and K P Ray, and R W Butcher
June 1980, Cancer research,
G M Nemecek, and K P Ray, and R W Butcher
March 1981, Biochemical and biophysical research communications,
G M Nemecek, and K P Ray, and R W Butcher
September 1980, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
G M Nemecek, and K P Ray, and R W Butcher
January 1986, Journal of cyclic nucleotide and protein phosphorylation research,
G M Nemecek, and K P Ray, and R W Butcher
January 1970, Advances in biochemical psychopharmacology,
Copied contents to your clipboard!