Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid. 1990

D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285.

DL-2-Amino-3-phosphonopropionic acid, a phosphonate-substituted derivative of aspartic acid, has been shown to be an inhibitor of excitatory amino acid-stimulated phosphoinositide hydrolysis in rat brain slices. In this study, the enantiomers of 2-amino-3-phosphonopropionic acid were synthesized and used to further characterize the stereoselectivity and mechanism of interaction of this compound for inhibiting phosphoinositide-coupled (metabotropic) excitatory amino acid receptors. L-2-Amino-3-phosphonopropionic acid was 3-5 times more potent than D-2-amino-3-phosphonopropionic acid as an inhibitor of ibotenate-stimulated [3H]inositol monophosphate formation in slices of the rat hippocampus or quisqualate-stimulated [3H]inositol monophosphate formation in neonatal rat cerebral cortical slices. Carbachol-stimulated phosphoinositide hydrolysis was not inhibited by L-2-amino-3-phosphonopropionic acid, and L-2-amino-3-phosphonopropionic acid had no appreciable affinity for ionotropic excitatory amino acid receptors at concentrations required to inhibit metabotropic excitatory amino acid responses. The inhibitory effects of L-2-amino-3-phosphonopropionic acid or L-2-amino-4-phosphonobutyric acid on phosphoinositide hydrolysis were not competitive, because they could not be surmounted by increasing concentrations of ibotenate or quisqualate. L-2-Amino-3-phosphonopropionic acid inhibition also could not be prevented by washing the tissue before incubation with ibotenate. Thus, L-2-amino-3-phosphonopropionic acid is a stereoselective inhibitor of metabotropic excitatory amino acid receptors with little affinity for ionotropic receptors. However, the inhibitory effects of L-2-amino-3-phosphonopropionic acid or L-2-amino-4-phosphonobutyric acid were not readily reversed, and the site at which they act to inhibit metabotropic excitatory amino acid receptors remains to be determined.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D010875 Pipecolic Acids Acids, Pipecolic
D010880 Piperidines A family of hexahydropyridines.
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
November 1992, Journal of neurochemistry,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
March 1997, Neurochemical research,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
June 1990, Neuroscience letters,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
March 1979, Biochimica et biophysica acta,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
January 1989, Clinical physiology and biochemistry,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
August 1989, European journal of pharmacology,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
April 1995, European journal of pharmacology,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
March 2000, Pharmaceutica acta Helvetiae,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
January 1981, Progress in clinical and biological research,
D D Schoepp, and B G Johnson, and E C Smith, and L A McQuaid
September 1994, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
Copied contents to your clipboard!