Effect of high extracellular K+ on Na-K-ATPase in cultured canine kidney cells. 1990

M A Manuli, and I S Edelman
Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032.

The Madin-Darby canine kidney (MDCK) cell line was used to evaluate the influence of high extracellular K+, independent of hormonal effects, on renal Na-K-adenosinetriphosphatase (ATPase) activity and abundance. Confluent cell monolayers were incubated in control (5 mM) or high K+ (7.5 mM) medium for 24 h. Exposure to high K+ elicited a 46% rise in Na-K-ATPase activity and a 55% increase in ouabain-sensitive 86Rb uptake. Na-K-ATPase abundance, estimated from the number of ouabain-binding sites, also increased 63% over control in cells exposed to 7.5 mM K+, and as a consequence there was no statistically significant change in the catalytic turnover number. Northern blot analysis using rat cDNA probes for the alpha 1- and beta-subunits showed no corresponding changes in subunit-specific mRNA abundances at 24 h. We conclude that chronic exposure to high extracellular K+ produces a rise in renal epithelial Na-K-ATPase activity and active K+ transport, independent of changes in aldosterone, renal blood flow, or extracellular Na+ concentration. This effect is due to an increase in enzyme abundance rather than a change in catalytic turnover rate. The results of Northern analysis suggest that regulation of Na-K-ATPase activity and abundance by high K+ may involve translational or posttranslational mechanisms, but further study with cDNA probes of canine origin is needed to resolve this issue.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012967 Sodium Dodecyl Sulfate An anionic surfactant, usually a mixture of sodium alkyl sulfates, mainly the lauryl; lowers surface tension of aqueous solutions; used as fat emulsifier, wetting agent, detergent in cosmetics, pharmaceuticals and toothpastes; also as research tool in protein biochemistry. Sodium Lauryl Sulfate,Irium,Dodecyl Sulfate, Sodium,Lauryl Sulfate, Sodium,Sulfate, Sodium Dodecyl,Sulfate, Sodium Lauryl

Related Publications

M A Manuli, and I S Edelman
February 1987, The American journal of physiology,
M A Manuli, and I S Edelman
May 1992, The American journal of physiology,
M A Manuli, and I S Edelman
February 1992, Endocrinologia japonica,
M A Manuli, and I S Edelman
January 1984, Hypertension (Dallas, Tex. : 1979),
M A Manuli, and I S Edelman
May 1989, Neurochemical research,
M A Manuli, and I S Edelman
January 1995, Acta physiologica Hungarica,
M A Manuli, and I S Edelman
January 1985, Society of General Physiologists series,
M A Manuli, and I S Edelman
August 1986, The American journal of physiology,
M A Manuli, and I S Edelman
January 1972, Journal de physiologie,
M A Manuli, and I S Edelman
April 1995, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!