Apamin increases post-spike excitability of supraoptic nucleus neurons in anaesthetized morphine-naïve rats and morphine-dependent rats: consequences for morphine withdrawal excitation. 2011

Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.

Supraoptic nucleus (SON) oxytocin neurons develop morphine dependence when chronically exposed to this opiate and undergo excitation when morphine is subsequently withdrawn. Morphine withdrawal excitation is evident as an increased action potential (spike) firing rate and is associated with an increased post-spike excitability that is consistent with the expression of an enhanced post-spike afterdepolarization (ADP) during withdrawal. Here, we administered apamin (which inhibits the medium afterhyperpolarization [mAHP] in vitro and unmasks an ADP) into the SON of urethane-anaesthetized rats to determine its effects on oxytocin neurons in vivo. As predicted, intra-SON apamin administration increased the propensity to fire a spike soon (<100 ms) after each spike (post-spike excitability) more in oxytocin neurons recorded from morphine-treated rats than in morphine-naïve rats. However, intra-SON apamin did not alter the overall firing rate of oxytocin neurons recorded from morphine-treated rats or morphine-naïve rats, indicating that an increase in post-spike excitability alone is not sufficient to trigger withdrawal excitation of oxytocin neurons. Nevertheless, bilateral intra-SON apamin infusion increased oxytocin secretion (which depends on firing pattern as well as firing rate) by 90 ± 46% in morphine-dependent rats (P < 0.01 compared to aCSF). Hence, an increase in post-spike excitability does not appear to drive morphine withdrawal-induced increases in oxytocin neuron firing rate, but does contribute to withdrawal-induced hyper-secretion of oxytocin.

UI MeSH Term Description Entries
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009021 Morphine Dependence Strong dependence, both physiological and emotional, upon morphine. Morphine Abuse,Morphine Addiction,Abuse, Morphine,Addiction, Morphine,Dependence, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000701 Analgesics, Opioid Compounds with activity like OPIATE ALKALOIDS, acting at OPIOID RECEPTORS. Properties include induction of ANALGESIA or NARCOSIS. Opioid,Opioid Analgesic,Opioid Analgesics,Opioids,Full Opioid Agonists,Opioid Full Agonists,Opioid Mixed Agonist-Antagonists,Opioid Partial Agonists,Partial Opioid Agonists,Agonist-Antagonists, Opioid Mixed,Agonists, Full Opioid,Agonists, Opioid Full,Agonists, Opioid Partial,Agonists, Partial Opioid,Analgesic, Opioid,Full Agonists, Opioid,Mixed Agonist-Antagonists, Opioid,Opioid Agonists, Full,Opioid Agonists, Partial,Opioid Mixed Agonist Antagonists,Partial Agonists, Opioid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
June 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
May 2000, Brain research bulletin,
Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
January 1995, Advances in experimental medicine and biology,
Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
July 2000, Neuropharmacology,
Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
January 1995, Advances in experimental medicine and biology,
Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
January 1991, The Journal of physiology,
Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
March 1997, Neuroreport,
Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
January 1998, Brain research,
Philip M Bull, and John A Russell, and Victoria Scott, and Colin H Brown
September 1997, Neuroscience,
Copied contents to your clipboard!