Inhibition of tumor angiogenesis by antibodies, synthetic small molecules and natural products. 2011

O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
Department of Pharmaceutical Biology, Institute of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.

Cancer remains one of the major causes of death worldwide. The switch to pathological angiogenesis is a key process in the promotion of cancer and consequently provides several new and promising targets to anticancer therapy. Thus, antagonizing angiogenesis cuts off the tumor's oxygen and nutrition supply. This review focuses on angiogenesis inhibitors as option for cancer treatment. Modes of action, adverse effects, mechanisms of resistance as well as new developments are highlighted. One approach in angiogenesis inhibition is intermitting the further VEGF (vascular endothelial growth factor) signal pathway with monoclonal antibodies. Bevacizumab is a highly specific recombinant humanized monoclonal IgG antibody targeting VEGF-A. An efficient antitumor therapy demands more specific antibodies that affect other signal molecules besides VEGF-A, which is in the focus of current research. In addition to antagonizing VEGF, there are also small molecules that inhibit receptor tyrosine kinases (RTKs). Many RTK inhibitors have been described, which exhibit different specificity profiles. The question, whether highly specific antagonists are necessary remains open, because other affected RTKs may also represent growth factor receptors that are essential for tumor growth. Therefore their inhibition may also contribute to anticancer activity. Secondary plant metabolites represent templates for the development of new small molecules. The identification of new drugs from plants has a long and successful history. There is convincing evidence for the beneficial effect of phytochemicals on cancer-related pathways, particularly with regard to anti-angiogenesis. Plant phenolics are the most important category of phytochemicals, including flavanoids. Prominent phytochemicals affecting different pathways of angiogenesis are green tea polyphenols (epigallocatechin gallate) and soy bean isoflavones (genistein).

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D009389 Neovascularization, Pathologic A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions. Angiogenesis, Pathologic,Angiogenesis, Pathological,Neovascularization, Pathological,Pathologic Angiogenesis,Pathologic Neovascularization,Pathological Angiogenesis,Pathological Neovascularization
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D000972 Antineoplastic Agents, Phytogenic Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity. Antineoplastics, Botanical,Antineoplastics, Phytogenic,Agents, Phytogenic Antineoplastic,Botanical Antineoplastics,Phytogenic Antineoplastic Agents,Phytogenic Antineoplastics
D001688 Biological Products Complex pharmaceutical substances, preparations, or matter derived from organisms usually obtained by biological methods or assay. Biologic,Biologic Drug,Biologic Product,Biological,Biological Drug,Biological Medicine,Biological Product,Biologics,Biopharmaceutical,Natural Product,Natural Products,Biologic Drugs,Biologic Medicines,Biologic Pharmaceuticals,Biologic Products,Biological Drugs,Biological Medicines,Biologicals,Biopharmaceuticals,Products, Biological,Drug, Biologic,Drug, Biological,Drugs, Biologic,Drugs, Biological,Medicine, Biological,Medicines, Biologic,Medicines, Biological,Pharmaceuticals, Biologic,Product, Biologic,Product, Biological,Product, Natural
D042442 Vascular Endothelial Growth Factors A family of angiogenic proteins that are closely-related to VASCULAR ENDOTHELIAL GROWTH FACTOR A. They play an important role in the growth and differentiation of vascular as well as lymphatic endothelial cells. VEGFs
D054852 Small Molecule Libraries Large collections of small molecules (molecular weight about 600 or less), of similar or diverse nature which are used for high-throughput screening analysis of the gene function, protein interaction, cellular processing, biochemical pathways, or other chemical interactions. It includes virtual libraries. Chemical Libraries,Molecular Libraries, Small,Libraries, Chemical,Libraries, Small Molecular,Libraries, Small Molecule,Molecule Libraries, Small,Small Molecular Libraries

Related Publications

O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
January 2013, Current pharmaceutical design,
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
October 2005, Onkologie,
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
January 2006, Current medicinal chemistry,
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
August 2000, Drug discovery today,
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
January 2020, Current pharmaceutical design,
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
January 2018, Biological & pharmaceutical bulletin,
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
January 2021, Molecules (Basel, Switzerland),
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
June 2014, Natural product reports,
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
October 2008, Organogenesis,
O Wahl, and M Oswald, and L Tretzel, and E Herres, and J Arend, and T Efferth
March 2009, Current drug targets,
Copied contents to your clipboard!