Hypochlorite-modified adenine nucleotides: structure, spin-trapping, and formation by activated guinea pig polymorphonuclear leukocytes. 1990

C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana 70112.

Adenosine and its nucleotides react with hypochlorite to form unstable products that have been identified as the N6 chloramine derivatives. These chloramines spontaneously oligomerize, form stable adducts with proteins and nucleic acids, and are converted with loss of chlorine to the original nucleoside or nucleotide by reducing agents. The chloramines are associated with a free radical, and the spin-trapping of adenosine chloramine with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) yielded a mixture of unstable nitroxyl adducts that corresponded to nitrogen-centered radicals from the parent nucleoside. When activated guinea pig polymorphonuclear leukocytes were stimulated with phorbol myristate acetate to produce hypochlorite, they actively incorporated [14C]adenosine into acid-insoluble products by a process that was dependent on oxygen and inhibited by azide and thiols. These findings suggest that adenine nucleotide chloramines are generated by activated phagocytic cells and form ligands with proteins and nucleic acids as observed in model systems. The results imply that nucleotide chloramines are among the cytotoxic and possibly mutagenic factors that are associated with the inflammatory process.

UI MeSH Term Description Entries
D006997 Hypochlorous Acid An oxyacid of chlorine (HClO) containing monovalent chlorine that acts as an oxidizing or reducing agent. Hypochlorite,Hypochlorous Acids
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002700 Chloramines Inorganic derivatives of ammonia by substitution of one or more hydrogen atoms with chlorine atoms or organic compounds with the general formulas R2NCl and RNCl2 (where R is an organic group). Chloroamines
D002713 Chlorine An element with atomic symbol Cl, atomic number 17, and atomic weight 35, and member of the halogen family. Chlorine Gas,Chlorine-35,Cl2 Gas,Chlorine 35,Gas, Chlorine,Gas, Cl2
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical

Related Publications

C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
September 1972, Infection and immunity,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
January 1986, Methods in enzymology,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
August 1962, Experientia,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
November 1979, The Journal of biological chemistry,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
June 1987, Hiroshima journal of medical sciences,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
January 1989, Biomaterials, artificial cells, and artificial organs,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
May 1962, Nature,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
January 1988, Sangyo igaku. Japanese journal of industrial health,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
September 1973, Infection and immunity,
C Bernofsky, and B M Bandara, and O Hinojosa, and S L Strauss
October 1984, Journal of leukocyte biology,
Copied contents to your clipboard!