Construction and analysis of linking libraries from the mouse X chromosome. 1990

N Brockdorff, and M Montague, and S Smith, and S Rastan
Section of Comparative Biology, MRC Clinical Research Centre, Harrow, Middlesex, United Kingdom.

A hybrid cell line containing the mouse X chromosome on a human background has been used to construct linking libraries from the mouse X chromosome, and approximately 250 unique EagI and NotI clones have been identified. Seventy-three clones have been sublocalized onto the X chromosome using interspecific Mus spretus/Mus domesticus crosses and a panel of somatic cell hybrids carrying one-half of reciprocal X-autosome translocations. The average spacing of the linking clones mapped to date is about one every 2 Mb of DNA. Two clones from the central region of the chromosome have been physically linked by pulsed-field gel electrophoresis. A large number of clones contain conserved sequences, indicating the presence of CpG-rich island-associated genes. The clones isolated from these libraries provide a valuable resource for comparative mapping between man and mouse X chromosomes, isolation of X-linked disease loci of interest by reverse genetics, and analysis of the long-range structure and organization of the chromosome.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009115 Muridae A family of the order Rodentia containing 250 genera including the two genera Mus (MICE) and Rattus (RATS), from which the laboratory inbred strains are developed. The fifteen subfamilies are SIGMODONTINAE (New World mice and rats), CRICETINAE, Spalacinae, Myospalacinae, Lophiomyinae, ARVICOLINAE, Platacanthomyinae, Nesomyinae, Otomyinae, Rhizomyinae, GERBILLINAE, Dendromurinae, Cricetomyinae, MURINAE (Old World mice and rats), and Hydromyinae. Murids,Murid
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

N Brockdorff, and M Montague, and S Smith, and S Rastan
May 2001, Current protocols in human genetics,
N Brockdorff, and M Montague, and S Smith, and S Rastan
January 1993, Methods in enzymology,
N Brockdorff, and M Montague, and S Smith, and S Rastan
September 1991, Genomics,
N Brockdorff, and M Montague, and S Smith, and S Rastan
May 1994, International journal of radiation biology,
N Brockdorff, and M Montague, and S Smith, and S Rastan
November 1999, Gene,
N Brockdorff, and M Montague, and S Smith, and S Rastan
January 1989, Cytogenetics and cell genetics,
N Brockdorff, and M Montague, and S Smith, and S Rastan
October 2000, Environmental microbiology,
N Brockdorff, and M Montague, and S Smith, and S Rastan
January 1993, Methods in enzymology,
N Brockdorff, and M Montague, and S Smith, and S Rastan
January 1993, Methods in enzymology,
Copied contents to your clipboard!