Effect of urate on calcium oxalate crystallization in human urine: evidence for a promotory role of hyperuricosuria in urolithiasis. 1990

P K Grover, and R L Ryall, and V R Marshall
Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia.

1. The effect of hyperuricosuria, simulated by increasing the concentration of dissolved urate, on the crystallization of calcium oxalate in human urine was examined. 2. Twenty urine samples were studied. Ten of these, designated type A, spontaneously precipitated calcium oxalate dihydrate crystals upon the addition of a solution of sodium urate solution which raised the median urate concentration from 3.1 to 7.0 mmol/l. 3. Adding dissolved urate to the remaining type B samples raised the median urate concentration from 2.2 to 6.2 mmol/l, but did not cause the precipitation of calcium oxalate. This was induced in these samples by the addition of a standard load of oxalate above an empirically determined metastable limit. 4. In the type B urine samples, the addition of urate decreased the median metastable limit from 125 to 66 mumol of oxalate, trebled the median volume of crystalline calcium oxalate deposited from 35,000 to 105,000 microns3/microliters and significantly increased the overall size of the particles precipitated. Calcium oxalate monohydrate was exclusively precipitated, and the individual crystals deposited in the presence of urate were markedly smaller, more numerous, and more highly aggregated than those produced in its absence. 5. These results constitute the most convincing evidence yet obtained that hyperuricosuria may be a powerful promoter of calcium oxalate stone formation.

UI MeSH Term Description Entries
D008297 Male Males
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002129 Calcium Oxalate The calcium salt of oxalic acid, occurring in the urine as crystals and in certain calculi. Calcium Oxalate (1:1),Calcium Oxalate Dihydrate,Calcium Oxalate Dihydrate (1:1),Calcium Oxalate Monohydrate,Calcium Oxalate Monohydrate (1:1),Calcium Oxalate Trihydrate,Dihydrate, Calcium Oxalate,Monohydrate, Calcium Oxalate,Oxalate, Calcium,Trihydrate, Calcium Oxalate
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D014527 Uric Acid An oxidation product, via XANTHINE OXIDASE, of oxypurines such as XANTHINE and HYPOXANTHINE. It is the final oxidation product of purine catabolism in humans and primates, whereas in most other mammals URATE OXIDASE further oxidizes it to ALLANTOIN. 2,6,8-Trihydroxypurine,Ammonium Acid Urate,Monosodium Urate,Monosodium Urate Monohydrate,Potassium Urate,Sodium Acid Urate,Sodium Acid Urate Monohydrate,Sodium Urate,Sodium Urate Monohydrate,Trioxopurine,Urate,Acid Urate, Ammonium,Acid Urate, Sodium,Acid, Uric,Monohydrate, Monosodium Urate,Monohydrate, Sodium Urate,Urate Monohydrate, Monosodium,Urate Monohydrate, Sodium,Urate, Ammonium Acid,Urate, Monosodium,Urate, Potassium,Urate, Sodium,Urate, Sodium Acid
D014545 Urinary Calculi Low-density crystals or stones in any part of the URINARY TRACT. Their chemical compositions often include CALCIUM OXALATE, magnesium ammonium phosphate (struvite), CYSTINE, or URIC ACID. Urinary Stones,Urinary Tract Stones,Calculi, Urinary,Calculus, Urinary,Stone, Urinary,Stone, Urinary Tract,Stones, Urinary,Stones, Urinary Tract,Urinary Calculus,Urinary Stone,Urinary Tract Stone

Related Publications

P K Grover, and R L Ryall, and V R Marshall
October 2011, Urological research,
P K Grover, and R L Ryall, and V R Marshall
March 1977, The Journal of clinical investigation,
P K Grover, and R L Ryall, and V R Marshall
January 1984, Nephrologie,
P K Grover, and R L Ryall, and V R Marshall
October 2021, Urolithiasis,
P K Grover, and R L Ryall, and V R Marshall
November 1999, International journal of urology : official journal of the Japanese Urological Association,
P K Grover, and R L Ryall, and V R Marshall
January 1992, Urologia internationalis,
P K Grover, and R L Ryall, and V R Marshall
March 1989, The Journal of urology,
P K Grover, and R L Ryall, and V R Marshall
January 1998, Hinyokika kiyo. Acta urologica Japonica,
P K Grover, and R L Ryall, and V R Marshall
January 1988, Medicina,
Copied contents to your clipboard!