Mechanism-based inactivation of leukotriene A4 hydrolase during leukotriene B4 formation by human erythrocytes. 1990

L Orning, and D A Jones, and F A Fitzpatrick
Department of Pharmacology C-236, University of Colorado Health Sciences Center, Denver 80262.

Evidence is presented in support of a mechanism-based (suicide) inactivation of leukotriene A4 hydrolyase in intact human erythrocytes by leukotriene A4 and leukotriene A4 methyl ester. Loss of enzymatic activity, accompanying leukotriene B4 formation, was proportional to the substrate concentration. Inactivation was directly related to the amount of leukotriene B4 formation: for several, different experimental protocols 50% loss of hydrolase activity corresponded with formation of 10.3 +/- 2.1 microM leukotriene B4. The time course of inactivation was pseudo-first order and obeyed saturation kinetics. Apparent inactivation (KI) and first-order rate (ki) constants for leukotriene A4 were 28 microM and 0.35 min-1, respectively. Leukotriene A4 methyl ester was also a site-directed inactivator with a similar KI = 25 microM and a ki = 0.1 min-1. For single incubations substrate instability limited the extent of inactivation to 50% of the initial enzyme activity. Following multiple, consecutive incubations with leukotriene A4 this increased and approached 80-90%; however, a residual activity of 10-20% suggested that a pool of enzyme was not susceptible to inactivation. Recovery of enzymatic activity, following inactivation, was negligible in intact erythrocytes and isolated enzyme. A single radiolabeled protein, corresponding to leukotriene A4 hydrolase, was detected by electrophoretic analysis of the incubation between [3H]leukotriene A4 and erythrocytes, or partially purified enzyme. Incorporation of [3H]leukotriene A4 methyl ester into enzyme was linearly related to its inactivation: 191 +/- 5 pmol incorporated corresponded to 10% loss of activity. Results conform to criteria for a mechanism-based inactivation, in which leukotriene A4 participates in two parallel processes, one leading to leukotriene B4 formation, the other to "suicide" inactivation of leukotriene A4 hydrolase in intact erythrocytes. The specific, rather than indiscriminate nature of this process has implications for the regulation of cellular leukotriene B4 formation. It may also afford a basis to monitor transcellular biosynthesis of leukotriene B4 in vivo.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015289 Leukotrienes A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system. Leukotriene
D017572 Leukotriene A4 (2S-(2 alpha,3 beta(1E,3E,5Z,8Z)))-3-(1,3,5,8-Tetradecatetraenyl)oxiranebutanoic acid. An unstable allylic epoxide, formed from the immediate precursor 5-HPETE via the stereospecific removal of a proton at C-10 and dehydration. Its biological actions are determined primarily by its metabolites, i.e., LEUKOTRIENE B4 and cysteinyl-leukotrienes. Alternatively, leukotriene A4 is converted into LEUKOTRIENE C4 by glutathione-S-transferase or into 5,6-di-HETE by the epoxide-hydrolase. (From Dictionary of Prostaglandins and Related Compounds, 1990) LTA4,Leukotriene A,Leukotriene A-4,Leukotrienes A,Leukotriene A 4
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

L Orning, and D A Jones, and F A Fitzpatrick
November 1992, The Journal of biological chemistry,
L Orning, and D A Jones, and F A Fitzpatrick
October 1995, Journal of lipid mediators and cell signalling,
L Orning, and D A Jones, and F A Fitzpatrick
June 1996, Proceedings of the National Academy of Sciences of the United States of America,
L Orning, and D A Jones, and F A Fitzpatrick
April 2002, Proceedings of the National Academy of Sciences of the United States of America,
L Orning, and D A Jones, and F A Fitzpatrick
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
L Orning, and D A Jones, and F A Fitzpatrick
September 1984, The Journal of biological chemistry,
Copied contents to your clipboard!