Reconstitution of solubilized delta-opiate receptor binding sites in lipid vesicles. 1990

M A Scheideler, and R S Zukin
Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, New York 10467.

Delta-opiate receptors have been solubilized with the non-ionic bile salt detergent digitonin from NG108-15 cell membranes and reconstituted into lipid vesicles. Specific opiate binding was restored to soluble receptor preparations after supplementation with a brain lipid extract, and dilution below the effective detergent concentration. Saturable and specific opiate binding was measured for both membrane and vesicle preparations; dissociation constants (Kd) obtained from saturation isotherms of [3H]bremazocine binding were 1.3 and 4.2 nM, respectively. Relative affinity (IC50) values of ligand binding measured for subtype-selective agonists confirmed that a delta-opiate binding site interaction was recovered in vesicle preparations. Changes in agonist binding affinity noted for these experiments were explained by dissociation of the GTP-binding protein Gi from the receptor in detergent. The recovery of solubilized opiate receptors was nearly quantitative, and strictly dependent upon the total brain lipid preparation used in the reconstitution. Ligand binding was incompletely recovered after substituting pure, vesicle-forming phospholipid preparations. [3H]Bremazocine binding was also reconstituted after lectin affinity chromatography of solubilized receptor preparations, using conditions which likely effect the removal of endogenous lipid cofactors. A photoaffinity cross-linking methodology was employed to verify recovery of the delta-opiate receptor after its solubilization from membranes and reconstitution. Two membrane-associated proteins (50 and 70 kDa) were covalently tagged with an azido analog of beta-endorphin(Leu5) in cell membranes and subsequently identified by immunoblotting with antisera directed against this opioid. Labeling of the 50-kDa polypeptide was prevented by coincubating assay samples with a relative excess of (D-Pen2,5)enkephalin. This opioid binding polypeptide was also present in solubilized/reconstituted receptor preparations.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D009019 Morphinans Compounds based on a partially saturated iminoethanophenanthrene, which can be described as ethylimino-bridged benzo-decahydronaphthalenes. They include some of the OPIOIDS found in PAPAVER that are used as ANALGESICS. Morphinan
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell

Related Publications

M A Scheideler, and R S Zukin
January 1979, Endocrine research communications,
M A Scheideler, and R S Zukin
November 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M A Scheideler, and R S Zukin
September 1982, Brain research,
M A Scheideler, and R S Zukin
May 1983, Brain research,
M A Scheideler, and R S Zukin
January 1986, Journal of receptor research,
M A Scheideler, and R S Zukin
October 1980, European journal of pharmacology,
M A Scheideler, and R S Zukin
October 1984, Journal of neurochemistry,
M A Scheideler, and R S Zukin
March 1979, Life sciences,
Copied contents to your clipboard!