Inhibition by substrate of fructose 1,6-bisphosphatase purified from rat kidney cortex. Calculation of the kinetic constants of the enzyme. 1990

A M Vargas, and M M Sola, and M Bounias
Departamento de Bioquimica y Biologia Molecular, Universidad de Granada, Spain.

Fructose 1,6-bisphosphatase is a typical enzyme that is severely inhibited by its own substrate. This makes it difficult to determine all the parameters involved in its kinetics. It has been shown recently that if Vm is satisfactorily estimated the remaining parameters can be determined using the Hill plot (Bounias, M. (1988) Biochem. Int. 17, 147-154). The enzyme has been purified from rat kidney cortex nearly to homogeneity, and its kinetic constants have been calculated using a rigorous algebraic method. The most interesting result is that the substrate is unable to bind to the free enzyme as an inhibitor, which indicates that the enzyme lacks an allosteric site for hexose bisphosphates.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D005636 Fructosephosphates
D006597 Fructose-Bisphosphatase An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11. Fructose-1,6-Bisphosphatase,Fructose-1,6-Diphosphatase,Fructosediphosphatase,Hexosediphosphatase,D-Fructose-1,6-Bisphosphate 1-Phosphohydrolase,FDPase,Fructose-1,6-Biphosphatase,1-Phosphohydrolase, D-Fructose-1,6-Bisphosphate,D Fructose 1,6 Bisphosphate 1 Phosphohydrolase,Fructose 1,6 Biphosphatase,Fructose 1,6 Bisphosphatase,Fructose 1,6 Diphosphatase,Fructose Bisphosphatase
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A M Vargas, and M M Sola, and M Bounias
January 2000, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
A M Vargas, and M M Sola, and M Bounias
July 2001, Biochimica et biophysica acta,
A M Vargas, and M M Sola, and M Bounias
January 1982, Methods in enzymology,
A M Vargas, and M M Sola, and M Bounias
May 1981, Proceedings of the National Academy of Sciences of the United States of America,
A M Vargas, and M M Sola, and M Bounias
April 1981, The Journal of biological chemistry,
A M Vargas, and M M Sola, and M Bounias
January 1984, Biomedica biochimica acta,
A M Vargas, and M M Sola, and M Bounias
January 1986, Biomedica biochimica acta,
A M Vargas, and M M Sola, and M Bounias
January 2001, Bioorganic & medicinal chemistry letters,
A M Vargas, and M M Sola, and M Bounias
June 1980, Biochemical and biophysical research communications,
Copied contents to your clipboard!