T-antigen is not bound to the replication origin of the simian virus 40 late transcription complex. 1990

K G Hadlock, and L C Lutter
Molecular Biology Research Program, Henry Ford Hospital, Detroit, MI 48202.

Simian virus 40 tumor antigen (T-antigen) plays a central role in determining which gene is transcribed from viral DNA late in infection. Results from several studies have led to a model in which the binding of T-antigen to the viral origin of replication results in repression of transcription from the stronger early gene promoter and stimulation of transcription from the late gene promoter. We have tested this model by determining directly the occupancy of the T-antigen binding site in the origin of replication of the late transcription complex. Thus, viral transcription complexes were digested with BglI, a restriction enzyme that cuts in the viral replication origin. The enzyme cleaved 78(+/- 12)% of the late transcription complexes. Control experiments demonstrated that cleavage is blocked when T-antigen is bound to the origin site, that exogenously added T-antigen can bind to the site in the transcription complex, and that T-antigen is not released during isolation of the complex. These results indicate that most of the late transcription complexes do not have T-antigen bound to the origin site, and are therefore inconsistent with models that require this site to be occupied by T-antigen to maintain proper regulation of gene transcription late in infection.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents

Related Publications

K G Hadlock, and L C Lutter
April 1975, Proceedings of the National Academy of Sciences of the United States of America,
K G Hadlock, and L C Lutter
June 1985, Molecular and cellular biology,
K G Hadlock, and L C Lutter
July 1987, Journal of virology,
K G Hadlock, and L C Lutter
December 2006, The EMBO journal,
K G Hadlock, and L C Lutter
December 1987, Journal of virology,
K G Hadlock, and L C Lutter
March 1991, The Journal of biological chemistry,
K G Hadlock, and L C Lutter
January 2000, Molecular and cellular biology,
K G Hadlock, and L C Lutter
November 1986, Molecular and cellular biology,
Copied contents to your clipboard!