Factor IXHollywood: substitution of Pro55 by Ala in the first epidermal growth factor-like domain. 1990

S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
Department of Medicine, St Louis University School of Medicine, MO.

Factor IX is a multidomain protein essential for hemostasis. We describe a mutation in a patient affecting the first epidermal growth factor (EGF)-like domain of the protein. All exons and the promoter region of the gene were amplified by the polymerase chain reaction method, and sequenced. Only a single mutation (C----G), that predicts the substitution of Pro55 by Ala in the first EGF domain was found in the patient's gene. This mutation leads to new restriction sites for four enzymes. One new site (Nsi) was tested in the amplified exon IV fragment and was shown to provide a rapid and reliable marker for carrier detection and prenatal diagnosis in the affected family. The factor IX protein, termed factor IXHollywood (IXHW), was isolated to homogeneity from the patient's plasma. As compared with normal factor IX (IXN), IXHW contained the same amount of gamma-carboxy glutamic acid but twice the amount of beta-OH aspartic acid. Both IXHW and IXN contained no detectable free -SH groups. Further, IXHW could be readily cleaved to yield a factor IXa-like molecule by factor Xla/Ca2+. However, IXaHW (compared with IXaN) activated factor X approximately twofold slower in the presence of Ca2+ and phospholipid (PL), and 8- to 12-fold slower in the presence of Ca2+, PL, and factor VIIIa. Additionally, IXaHW had only approximately 10% of the activity of IXaN in an aPTT assay. In agreement with the nuclear magnetic resonance-derived structure of EGF, the Chou-Fasman algorithm strongly predicted a beta turn involving residues Asn-Pro55-Cys-Leu in IXN. Replacement of Pro55 by Ala gave a fourfold decrease in the beta turn probability for this peptide, suggesting a change(s) in the secondary structure in the EGF domain of IXHW. Since this domain of IXN is thought to have one high-affinity Ca2+ binding site and may be involved in PL and/or factor VIIIa binding, the localized secondary structural changes in IXHW could lead to distortion of the binding site(s) for the cofactor(s) and, thus, a dysfunctional molecule.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010314 Partial Thromboplastin Time The time required for the appearance of FIBRIN strands following the mixing of PLASMA with phospholipid platelet substitute (e.g., crude cephalins, soybean phosphatides). It is a test of the intrinsic pathway (factors VIII, IX, XI, and XII) and the common pathway (fibrinogen, prothrombin, factors V and X) of BLOOD COAGULATION. It is used as a screening test and to monitor HEPARIN therapy. Activated Partial Thromboplastin Time,Cephalin-Kaolin Coagulation Time,Kaolin-Cephalin Coagulation Time,Thromboplastin Time, Partial,Coagulation Time, Cephalin-Kaolin,Cephalin Kaolin Coagulation Time,Coagulation Time, Cephalin Kaolin,Coagulation Time, Kaolin-Cephalin,Kaolin Cephalin Coagulation Time
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons

Related Publications

S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
March 1998, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
April 1993, The Journal of biological chemistry,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
July 2002, American journal of human genetics,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
June 2005, Journal of thrombosis and haemostasis : JTH,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
November 1993, The Journal of biological chemistry,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
September 1996, Proceedings of the National Academy of Sciences of the United States of America,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
November 2004, The Journal of biological chemistry,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
January 2012, PloS one,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
August 1997, The Journal of biological chemistry,
S G Spitzer, and M N Kuppuswamy, and R Saini, and C K Kasper, and J J Birktoft, and S P Bajaj
August 1993, The Journal of biological chemistry,
Copied contents to your clipboard!