Decreased expression of DNA topoisomerase I in camptothecin-resistant tumor cell lines as determined by a monoclonal antibody. 1990

Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo.

DNA topoisomerase I (topo I) has been identified as a principal target of a plant alkaloid camptothecin (CPT) and its derivative (CPT-11). The latter compound is expected to be a clinically useful antitumor agent. Three human tumor cell lines resistant to CPT (A549/CPT, HT-29/CPT, St-4/CPT) were isolated in vitro, and a murine tumor cell line resistant to CPT-11 (P388/CPT) was isolated in vivo by continuous exposure of the drugs. A549/CPT, HT-29/CPT, and St-4/CPT showed 1.8-, 6.9-, and 8.8-fold more resistance to CPT, and P388/CPT showed 45-fold more resistance to CPT than did the parental line. To examine the possible involvement of topo I in drug-resistant mechanisms, a monoclonal antibody was developed by using purified human topo I as antigen. The antibody T14C (immunoglobulin G1) recognized both human and murine topo I, as shown by Western blot analysis. By using this monoclonal antibody, cellular contents of topo I were examined in CPT-resistant tumor lines. Respective contents of topo I in HT-29/CPT, St-4/CPT, and P388/CPT were approximately 8-, 4-, and 3-fold less than those in their parental cell lines. A549/CPT, a weak CPT-resistant line, possessed amounts of topo I similar to those of the parental line. HT-29/CPT showed lower topo I activity than did the parental HT-29 in the nuclear extracts and in the hydroxylapatite column-eluted fractions. Purified topo I from HT-29 and HT-29/CPT showed similar catalytic activity when the same amounts of protein were used. These results indicate that the quantitative reduction of topo I content seems to be the most frequently occurring event in the development of resistance to camptothecin.

UI MeSH Term Description Entries
D002166 Camptothecin An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecine
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077146 Irinotecan A semisynthetic camptothecin derivative that inhibits DNA TOPOISOMERASE I to prevent nucleic acid synthesis during S PHASE. It is used as an antineoplastic agent for the treatment of COLORECTAL NEOPLASMS and PANCREATIC NEOPLASMS. 7-Ethyl-10-hydroxycamptothecin,CPT 11,CPT-11,Camptosar,Camptothecin-11,Irinotecan Hydrochloride,Irrinotecan,NK012 Compound,SN 38,SN 38 11,SN-38,SN-38-11,7 Ethyl 10 hydroxycamptothecin,CPT11,Camptothecin 11,SN3811
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000972 Antineoplastic Agents, Phytogenic Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity. Antineoplastics, Botanical,Antineoplastics, Phytogenic,Agents, Phytogenic Antineoplastic,Botanical Antineoplastics,Phytogenic Antineoplastic Agents,Phytogenic Antineoplastics
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings

Related Publications

Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
December 2000, Cancer research,
Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
March 1988, The Journal of biological chemistry,
Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
December 1994, Anti-cancer drugs,
Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
March 1995, The Journal of biological chemistry,
Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
March 1995, Journal of medicinal chemistry,
Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
September 2013, Oncology reports,
Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
February 1993, Nucleic acids research,
Y Sugimoto, and S Tsukahara, and T Oh-hara, and T Isoe, and T Tsuruo
March 2004, The Journal of biological chemistry,
Copied contents to your clipboard!