New topoisomerase essential for chromosome segregation in E. coli. 1990

J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
Department of Bacteriology, National Institute of Health of Japan, Tokyo.

The nucleotide sequence of the parC gene essential for chromosome partition in E. coli was determined. The deduced amino acid sequence was homologous to that of the A subunit of gyrase. We found another new gene coding for about 70 kd protein. The gene was sequenced, and the deduced amino acid sequence revealed that the gene product was homologous to the gyrase B subunit. Mutants of this gene were isolated and showed the typical Par phenotype at nonpermissive temperature; thus the gene was named parE. Enhanced relaxation activity of supercoiled plasmid molecules was detected in the combined crude cell lysates prepared from the ParC and ParE overproducers. A topA mutation defective in topoisomerase I could be compensated by increasing both the parC and the parE gene dosage. It is suggested that the parC and parE genes code for the subunits of a new topoisomerase, named topo IV.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
November 2012, Molecular microbiology,
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
January 1968, Cold Spring Harbor symposia on quantitative biology,
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
January 2009, Molecular cell,
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
April 1995, Cell,
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
December 2016, Cell cycle (Georgetown, Tex.),
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
September 1997, Cell,
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
February 2000, Proceedings of the National Academy of Sciences of the United States of America,
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
January 2018, Frontiers in microbiology,
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
January 2015, Journal of biological engineering,
J Kato, and Y Nishimura, and R Imamura, and H Niki, and S Hiraga, and H Suzuki
January 2009, Cell cycle (Georgetown, Tex.),
Copied contents to your clipboard!