The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12. 1990

L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
Department of Molecular Biology, Odense University, Denmark.

We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) CytR selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP-CRP complex; (iii) introduction of point mutations in either CRP target resulted in loss of CytR regulation; and (iv) regulation by CytR of deletion mutants lacking CRP-2 could be specifically reestablished by increasing the intracellular concentration of CytR. These findings indicate that both CRP targets are required for efficient CytR repression of deoCp2. Models for the action of CytR are discussed in light of these findings.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011953 Receptors, Cyclic AMP Cell surface proteins that bind cyclic AMP with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized cyclic AMP receptors are those of the slime mold Dictyostelium discoideum. The transcription regulator CYCLIC AMP RECEPTOR PROTEIN of prokaryotes is not included nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Cyclic AMP Receptors,cAMP Receptors,Cyclic AMP Receptor,Receptors, cAMP,cAMP Receptor,Receptor, Cyclic AMP,Receptor, cAMP
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
May 1980, Biochemical and biophysical research communications,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
September 2007, FEMS microbiology letters,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
May 1989, Journal of bacteriology,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
April 1997, Journal of bacteriology,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
July 1988, Journal of bacteriology,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
November 1992, The Biochemical journal,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
September 1992, Journal of molecular biology,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
April 2001, The Journal of biological chemistry,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
April 2000, Molecular microbiology,
L Søgaard-Andersen, and J Martinussen, and N E Møllegaard, and S R Douthwaite, and P Valentin-Hansen
October 2009, Journal of bacteriology,
Copied contents to your clipboard!