Droplet microfluidics for high-throughput analysis of cells and particles. 2011

Michele Zagnoni, and Jonathan M Cooper
Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK. michele.zagnoni@eee.strath.ac.uk

Droplet microfluidics (DM) is an area of research which combines lab-on-a-chip (LOC) techniques with emulsion compartmentalization to perform high-throughput, chemical and biological assays. The key issue of this approach lies in the generation, over tens of milliseconds, of thousands of liquid vessels which can be used either as a carrier, to transport encapsulated particles and cells, or as microreactors, to perform parallel analysis of a vast number of samples. Each compartment comprises a liquid droplet containing the sample, surrounded by an immiscible fluid. This microfluidic technique is capable of generating subnanoliter and highly monodispersed liquid droplets, which offer many opportunities for developing novel single-cell and single-molecule studies, as well as high-throughput methodologies for the detection and sorting of encapsulated species in droplets. The aim of this chapter is to give an overview of the features of DM in a broad microfluidic context, as well as to show the advantages and limitations of the technology in the field of LOC analytical research. Examples are reported and discussed to show how DM can provide novel systems with applications in high-throughput, quantitative cell and particle analysis.

UI MeSH Term Description Entries
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004655 Emulsions Colloids formed by the combination of two immiscible liquids such as oil and water. Lipid-in-water emulsions are usually liquid, like milk or lotion. Water-in-lipid emulsions tend to be creams. The formation of emulsions may be aided by amphiphatic molecules that surround one component of the system to form MICELLES. Emulsion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D046210 Microfluidic Analytical Techniques Methods utilizing the principles of MICROFLUIDICS for sample handling, reagent mixing, and separation and detection of specific components in fluids. Microfluidic Analysis,Analyses, Microfluidic,Analysis, Microfluidic,Analytical Technique, Microfluidic,Analytical Techniques, Microfluidic,Microfluidic Analyses,Microfluidic Analytical Technique,Technique, Microfluidic Analytical,Techniques, Microfluidic Analytical
D059010 Single-Cell Analysis Assaying the products of or monitoring various biochemical processes and reactions in an individual cell. Analyses, Single-Cell,Analysis, Single-Cell,Single Cell Analysis,Single-Cell Analyses

Related Publications

Michele Zagnoni, and Jonathan M Cooper
February 2019, Lab on a chip,
Michele Zagnoni, and Jonathan M Cooper
June 2012, Lab on a chip,
Michele Zagnoni, and Jonathan M Cooper
March 2022, Accounts of chemical research,
Michele Zagnoni, and Jonathan M Cooper
January 2017, Accounts of chemical research,
Michele Zagnoni, and Jonathan M Cooper
June 2017, Cell chemical biology,
Michele Zagnoni, and Jonathan M Cooper
July 2016, Molecules (Basel, Switzerland),
Michele Zagnoni, and Jonathan M Cooper
October 2019, Micromachines,
Michele Zagnoni, and Jonathan M Cooper
November 2019, Electrophoresis,
Michele Zagnoni, and Jonathan M Cooper
March 2023, Biosensors & bioelectronics,
Michele Zagnoni, and Jonathan M Cooper
November 2018, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
Copied contents to your clipboard!