Role of gene 6 exonuclease in the replication and packaging of bacteriophage T7 DNA. 1990

P Serwer, and R H Watson, and M Son
Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760.

When bacteriophage T7 gene 6 exonuclease is genetically removed from T7-infected cells, degradation of intracellular T7 DNA is observed. By use of rate zonal centrifugation, followed by either pulsed-field agarose gel electrophoresis or restriction endonuclease analysis, in the present study, the following observations were made. (1) Most degradation of intracellular DNA requires the presence of T7 gene 3 endonuclease and is independent of DNA packaging; rapidly sedimenting, branched DNA accumulates when both the gene 3 and gene 6 products are absent. (2) A comparatively small amount of degradation requires packaging and occurs at both the joint between genomes in a concatemer and near the left end of intracellular DNA; DNA packaging is only partially blocked and end-to-end joining of genomes is not blocked in the absence of gene 6 exonuclease. (3) Fragments produced in the absence of gene 6 exonuclease are linear and do not further degrade; precursors of the fragments are non-linear. (4) Some, but not most, of the cleavages that produce these fragments occur selectively near two known origins of DNA replication. On the basis of these observations, the conclusion is drawn that most degradation that occurs in the absence of T7 gene 6 exonuclease is caused by cleavage at branches. The following hypothesis is presented: most, possibly all, of the extra branching induced by removal of gene 6 exonuclease is caused by strand displacement DNA synthesis at the site of RNA primers of DNA synthesis; the RNA primers, produced by multiple initiations of DNA replication, are removed by the RNase H activity of gene 6 exonuclease during a wild-type T7 infection. Observation of joining of genomes in the absence of gene 6 exonuclease and additional observations indicate that single-stranded terminal repeats required for concatamerization are produced by DNA replication. The observed selective shortening of the left end indicates that gene 6 exonuclease is required for formation of most, possibly all, mature left ends.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

P Serwer, and R H Watson, and M Son
October 1992, Virology,
P Serwer, and R H Watson, and M Son
April 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
P Serwer, and R H Watson, and M Son
November 1974, Journal of virology,
P Serwer, and R H Watson, and M Son
July 1980, Nucleic acids research,
P Serwer, and R H Watson, and M Son
February 1976, Journal of molecular biology,
P Serwer, and R H Watson, and M Son
February 2014, The Journal of biological chemistry,
P Serwer, and R H Watson, and M Son
January 1972, The Journal of biological chemistry,
P Serwer, and R H Watson, and M Son
January 1972, The Journal of biological chemistry,
P Serwer, and R H Watson, and M Son
January 1981, Progress in nucleic acid research and molecular biology,
Copied contents to your clipboard!