Single copy sequences in galago DNA resemble a repetitive human retrotransposon-like family. 1990

C W Schmid, and E F Wong, and N Deka
Department of Chemistry, University of California, Davis 95616.

Galago DNA contains a few single copy sequences that are homologous to the human THE 1 family of repeats. Two of these galago loci have been isolated as genomic clones and their structures are compared to the THE 1 consensus sequence. Whereas the human sequence resembles a proretroviral transposon, the galago sequences provide no evidence for a proretroviral sequence organization. The two galago clones share a common repeat sequence, which is homologous to the U5 region of the THE 1 long terminal repeat. Immediately 3' to this repeat, each galago clone contains sequences that are homologous to mutually exclusive regions of the internal THE 1 sequence. Thus, the human THE 1 sequence can be represented as a mosaic of the two ancestrally related galago loci. The galago loci are transcribed in vivo, so that their conservation in the primate genome could be selected. Human THE 1 repeats apparently resulted by recruiting preexisting cellular sequences via a retrovirally mediated process.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005701 Galago A genus of the family Lorisidae having four species which inhabit the forests and bush regions of Africa south of the Sahara and some nearby islands. The four species are G. alleni, G. crassicaudatus, G. demidovii, and G. senegalensis. There is another genus, Euoticus, containing two species which some authors have included in the Galago genus. Bush Babies,Galagos,Babies, Bush,Baby, Bush,Bush Baby
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C W Schmid, and E F Wong, and N Deka
January 2000, Archives of medical research,
C W Schmid, and E F Wong, and N Deka
January 1986, European journal of biochemistry,
C W Schmid, and E F Wong, and N Deka
April 1991, Nucleic acids research,
C W Schmid, and E F Wong, and N Deka
January 1986, Cold Spring Harbor symposia on quantitative biology,
C W Schmid, and E F Wong, and N Deka
January 1993, Methods in enzymology,
C W Schmid, and E F Wong, and N Deka
January 1980, European journal of biochemistry,
C W Schmid, and E F Wong, and N Deka
September 1980, Nucleic acids research,
C W Schmid, and E F Wong, and N Deka
June 1983, Nature,
Copied contents to your clipboard!