Steroid biosynthesis by zona glomerulosa-fasciculata cells in primary culture of guinea-pig adrenals. 1990

P Provencher, and A Lorrain, and A Bélanger, and J Fiet
Laval University Medical Centre, MRC Group in Molecular Endocrinology, Sainte-Foy, Quebec, Canada.

Steroidogenesis was studied in guinea-pig glomerulosa-fasciculata cells maintained in primary culture for up to 7 days. The basal secretion which remained stable for the first 2 days in culture rapidly rose to reach a plateau on day 4 at levels 6-7-fold higher than those observed during the first 2 days of culture while the maximal response to ACTH in terms of cortisol and androstenedione secretion was fairly stable throughout the 7-day period. Exposure of glomerulosa-fasciculata cells to ACTH caused a stimulation of pregnenolone, 17-hydroxypregnenolone, progesterone, 17-hydroxyprogesterone, corticosterone, 11-deoxy-corticosterone, 11-deoxycortisol, cortisol, dehydroepiandrosterone, androstenedione, 11 beta-hydroxyandrostenedione and aldosterone while, after 48 h of incubation, a marked accumulation of end-products, namely cortisol and 11 beta-hydroxyandrostenedione, was observed. The half-maximal steroidogenic response to ACTH occurred at concentrations varying between 1.7 x 10(-11) and 1.1 x 10(-10) mol/l for the 12 steroids examined. Addition of 8-bromoadenosine 3', 5'-cyclic monophosphate stimulated steroid secretion in a dose-dependent manner. Maximal response to 8-bromoadenosine 3', 5'-cyclic monophosphate was obtained at 1 mmol/l, and no further rise of steroid secretion was observed after addition of ACTH. Incubation of glomerulosa-fasciculata cells with labeled corticosterone, cortisol and androstenedione indicates that only androstenedione can be converted into 11 beta-hydroxyandrostenedione, thus suggesting that this end-product is a good parameter of the C-19 steroid production by guinea-pig glomerulosa-fasciculata cells in primary culture. The present data confirm that guinea-pig glomerulosa-fasciculata cells in primary culture provide an interesting model for the study of the regulation of C-19 steroid formation by the adrenals.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000305 Adrenal Cortex Hormones HORMONES produced by the ADRENAL CORTEX, including both steroid and peptide hormones. The major hormones produced are HYDROCORTISONE and ALDOSTERONE. Adrenal Cortex Hormone,Corticoid,Corticoids,Corticosteroid,Corticosteroids,Cortex Hormone, Adrenal,Hormone, Adrenal Cortex,Hormones, Adrenal Cortex
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic

Related Publications

P Provencher, and A Lorrain, and A Bélanger, and J Fiet
September 1981, Life sciences,
P Provencher, and A Lorrain, and A Bélanger, and J Fiet
July 1983, Journal of steroid biochemistry,
P Provencher, and A Lorrain, and A Bélanger, and J Fiet
January 1981, Acta physiologica Academiae Scientiarum Hungaricae,
P Provencher, and A Lorrain, and A Bélanger, and J Fiet
February 1976, Acta endocrinologica,
P Provencher, and A Lorrain, and A Bélanger, and J Fiet
March 1963, Acta endocrinologica,
P Provencher, and A Lorrain, and A Bélanger, and J Fiet
April 1993, The Journal of steroid biochemistry and molecular biology,
P Provencher, and A Lorrain, and A Bélanger, and J Fiet
October 1982, The Journal of clinical endocrinology and metabolism,
P Provencher, and A Lorrain, and A Bélanger, and J Fiet
July 1995, Biochemical and biophysical research communications,
Copied contents to your clipboard!