Differential effects of calcium on progesterone production in small and large bovine luteal cells. 1990

H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
Department of Physiology, New York State College of Veterinary Medicine, Cornell University, Ithaca 14853.

We studied the effects of calcium (Ca2+) ions in progesterone (P) production by separated small and large luteal cells. Corpora lutea were collected from 31 heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. P accumulation in cells plus media was determined after incubating 1 x 10(5) small and 5 x 10(3) large cells for 2 and 4 h respectively. Removal of Ca2+ from the medium did not influence basal P production in the small cells (P greater than 0.05). However, stimulation of P by luteinizing hormone (LH), prostaglandin E2 (PGE2), 8-bromo-cyclic 3',5' adenosine monophosphate (8-Br-cAMP) and prostaglandin F2 alpha (PGF2 alpha) was impaired (P less than 0.05) by low Ca2+ concentrations. LH and PGE2-stimulated cAMP production was not altered by low extracellular Ca2+ concentrations, and PGF2 alpha had no effect on cAMP. In contrast, basal as well as LH and forskolin-stimulated P production were attenuated (P less than 0.05) in Ca2(+)-deficient medium in the large cells. However, P production stimulated by 8-Br-cAMP was not altered in Ca2(+)-deficient medium. Steroidogenesis in large cells was also dependent on intracellular Ca2+, since 8-N, N-diethylamineocytyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular Ca2+ release and/or action, suppressed (P less than 0.05) basal, LH and 8-Br-cAMP stimulated P. In contrast, basal P in small cells was not altered by TMB-8; whereas LH-stimulated P was reduced 2-fold (P less than 0.05). The calcium ionophore, A23187, inhibited LH-stimulated P in small cells and both basal and agonist-stimulated P in large cells. These studies show that basal P production in small cells does not require Ca2+ ions, while hormone-stimulated P production in small cells and both basal and hormone-stimulated P in large cells do require Ca2+. The inhibitory effect of Ca2+ ion removal was exerted prior to the generation of cAMP in the large cells, but distal to cAMP generation in hormone-stimulated small cells. The calmodulin/protein kinase C antagonist, W-7, also inhibited both basal and hormone-stimulated P production in both small and large luteal cells, indicating that P production in luteal cells also involves Ca2(+)-calmodulin/protein kinase C-dependent mechanisms.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008184 Luteal Cells PROGESTERONE-producing cells in the CORPUS LUTEUM. The large luteal cells derive from the GRANULOSA CELLS. The small luteal cells derive from the THECA CELLS. Lutein Cells,Granulosa-Luteal Cells,Granulosa-Lutein Cells,Large Luteal Cells,Small Luteal Cells,Theca-Luteal cells,Theca-Lutein Cells,Cell, Granulosa-Luteal,Cell, Granulosa-Lutein,Cell, Large Luteal,Cell, Luteal,Cell, Lutein,Cell, Small Luteal,Cell, Theca-Lutein,Cells, Granulosa-Luteal,Cells, Granulosa-Lutein,Cells, Large Luteal,Cells, Luteal,Cells, Lutein,Cells, Small Luteal,Cells, Theca-Lutein,Granulosa Luteal Cells,Granulosa Lutein Cells,Granulosa-Luteal Cell,Granulosa-Lutein Cell,Large Luteal Cell,Luteal Cell,Luteal Cell, Large,Luteal Cell, Small,Luteal Cells, Large,Luteal Cells, Small,Lutein Cell,Small Luteal Cell,Theca Luteal cells,Theca Lutein Cells,Theca-Luteal cell,Theca-Lutein Cell,cell, Theca-Luteal,cells, Theca-Luteal
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004971 Estrus The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
D005260 Female Females
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
August 1988, Prostaglandins,
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
March 1988, Journal of reproduction and fertility,
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
September 1994, Journal of reproduction and fertility,
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
September 1983, Journal of reproduction and fertility,
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
May 1989, Endocrinology,
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
January 1991, Journal of reproduction and fertility. Supplement,
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
January 2011, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
October 1994, Sheng li xue bao : [Acta physiologica Sinica],
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
June 2017, The Journal of veterinary medical science,
H W Alila, and J S Davis, and J P Dowd, and R A Corradino, and W Hansel
December 1990, Biology of reproduction,
Copied contents to your clipboard!