Selective vulnerability of rat brain regions to unconjugated bilirubin. 2011

Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.

Hippocampus is one of the brain regions most vulnerable to unconjugated bilirubin (UCB) encephalopathy, although cerebellum also shows selective yellow staining in kernicterus. We previously demonstrated that UCB induces oxidative stress in cortical neurons, disruption of neuronal network dynamics, either in developing cortical or hippocampal neurons, and that immature cortical neurons are more prone to UCB-induced injury. Here, we studied if immature rat neurons isolated from cortex, cerebellum and hippocampus present distinct features of oxidative stress and cell dysfunction upon UCB exposure. We also explored whether oxidative damage and its regulation contribute to neuronal dysfunction induced by hyperbilirubinemia, considering neurite extension and ramification, as well as cell death. Our results show that UCB induces nitric oxide synthase expression, as well as production of nitrites and cyclic guanosine monophosphate in immature neurons, mainly in those from hippocampus. After exposure to UCB, hippocampal neurons presented the highest content of reactive oxygen species, disruption of glutathione redox status and cell death, when compared to neurons from cortex or cerebellum. In particular, the results indicate that cells exposed to UCB undertake an adaptive response that involves DJ-1, a multifunctional neuroprotective protein implicated in the maintenance of cellular oxidation status. However, longer neuronal exposure to UCB caused down-regulation of DJ-1 expression, especially in hippocampal neurons. In addition, a greater impairment in neurite outgrowth and branching following UCB treatment was also noticed in immature neurons from hippocampus. Interestingly, pre-incubation with N-acetylcysteine, a precursor of glutathione synthesis, protected neurons from UCB-induced oxidative stress and necrotic cell death, preventing DJ-1 down-regulation and neuritic impairment. Taken together, these data point to oxidative injury and disruption of neuritic network as hallmarks in hippocampal susceptibility to UCB. Most importantly, they also suggest that local differences in glutathione content may account to the different susceptibility between brain regions exposed to UCB.

UI MeSH Term Description Entries
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071617 Protein Deglycase DJ-1 A protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins, releasing repaired proteins and lactate or glycolate. It deglycates CYSTEINE, ARGININE and LYSINE residues to reactivate proteins by reversing glycation and prevent the formation of ADVANCED GLYCATION END PRODUCTS. It protects cells against OXIDATIVE STRESS and CELL DEATH by functioning as an oxidative stress sensor and redox-sensitive MOLECULAR CHAPERONE and PROTEASE. Mutations in the PARK7 gene are associated with autosomal-recessive, early-onset PARKINSON DISEASE. DJ-1 Protein,DJ-1-PARK7 Protein,DJ1 Protein,PARK7 Protein,Parkinson Protein 7,Parkinsonism Associated Deglycase,DJ 1 PARK7 Protein,DJ 1 Protein,DJ-1, Protein Deglycase,Deglycase, Parkinsonism Associated

Related Publications

Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
January 2001, Journal of applied toxicology : JAT,
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
January 1995, Biology of the neonate,
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
January 1995, Biology of the neonate,
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
June 1986, The Biochemical journal,
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
January 1979, The American journal of physiology,
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
June 1995, Neurobiology of disease,
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
July 1966, The Journal of clinical investigation,
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
January 2018, Journal of neuroinflammation,
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
December 1981, Clinical science (London, England : 1979),
Ana Rita Vaz, and Sandra L Silva, and Andreia Barateiro, and Ana Sofia Falcão, and Adelaide Fernandes, and Maria A Brito, and Dora Brites
January 1966, Actualites hepato-gastro-enterologiques,
Copied contents to your clipboard!