Excitatory amino acid response in isolated nucleus tractus solitarii neurons of the rat. 1990

T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
Department of Neurophysiology, Tohoku University School of Medicine, Sendai, Japan.

The excitatory amino-acid-induced currents in nucleus tractus solitarii neurons freshly isolated from rats were investigated in a whole-cell recording mode using a conventional patch-clamp technique. At a holding potential of -70 mV, L-glutamate (Glu), N-methyl-D-aspartate (NMDA) with 10(-9) M glycine, kainate (KA), quisqualate (QA) and L-aspartate (Asp) evoked inward currents. The currents increased in a sigmoidal fashion with increasing agonists concentration. The half-maximum concentration (EC50) values were 5 x 10(-5) M for Glu, 10(-6) M for QA, 10(-4) M for KA, 6 x 10(-5) M for NMDA and 5 x 10(-5) M for Asp. The Hill coefficients of the Glu-, QA-, KA-, NMDA- and Asp-induced responses were 1.0, 1.3, 1.1, 1.3 and 1.1, respectively. The Glu-, QA-, NMDA- and Asp-induced currents consisted of a transient initial peak and a successive steady-state component showing no desensitization. These currents had the same reversal potential near +5 mV. In the current-voltage (I-V) relationships for the Glu-, NMDA- and Asp-induced currents, slight outward rectifications were observed in Mg2(+)-free external solution at membrane potentials negative to 0 mV. In the presence of extracellular Mg2+, the currents induced by Glu, NMDA and Asp were suppressed at negative membrane potentials, but the suppression was less for the Glu response. The I-V relationships for QA- and KA-induced responses were almost linear at a membrane potential between -90 and +50 mV with or without the presence of Mg2+.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
July 1988, Brain research,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
May 1993, The Journal of physiology,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
January 2012, Brain research,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
January 1993, Neuroscience letters,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
November 1990, The American journal of physiology,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
December 1993, Journal of neurophysiology,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
August 1997, The European journal of neuroscience,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
March 1991, Naunyn-Schmiedeberg's archives of pharmacology,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
August 1992, The American journal of physiology,
T Nakagawa, and T Shirasaki, and M Wakamori, and A Fukuda, and N Akaike
November 2009, Journal of chemical neuroanatomy,
Copied contents to your clipboard!